Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171691821> ?p ?o ?g. }
- W3171691821 endingPage "e28219" @default.
- W3171691821 startingPage "e28219" @default.
- W3171691821 abstract "Background Traditional Chinese medicine (TCM) clinical records contain the symptoms of patients, diagnoses, and subsequent treatment of doctors. These records are important resources for research and analysis of TCM diagnosis knowledge. However, most of TCM clinical records are unstructured text. Therefore, a method to automatically extract medical entities from TCM clinical records is indispensable. Objective Training a medical entity extracting model needs a large number of annotated corpus. The cost of annotated corpus is very high and there is a lack of gold-standard data sets for supervised learning methods. Therefore, we utilized distantly supervised named entity recognition (NER) to respond to the challenge. Methods We propose a span-level distantly supervised NER approach to extract TCM medical entity. It utilizes the pretrained language model and a simple multilayer neural network as classifier to detect and classify entity. We also designed a negative sampling strategy for the span-level model. The strategy randomly selects negative samples in every epoch and filters the possible false-negative samples periodically. It reduces the bad influence from the false-negative samples. Results We compare our methods with other baseline methods to illustrate the effectiveness of our method on a gold-standard data set. The F1 score of our method is 77.34 and it remarkably outperforms the other baselines. Conclusions We developed a distantly supervised NER approach to extract medical entity from TCM clinical records. We estimated our approach on a TCM clinical record data set. Our experimental results indicate that the proposed approach achieves a better performance than other baselines." @default.
- W3171691821 created "2021-06-22" @default.
- W3171691821 creator A5001633124 @default.
- W3171691821 creator A5024869142 @default.
- W3171691821 creator A5060692949 @default.
- W3171691821 creator A5064557021 @default.
- W3171691821 date "2021-06-14" @default.
- W3171691821 modified "2023-09-27" @default.
- W3171691821 title "Extraction of Traditional Chinese Medicine Entity: Design of a Novel Span-Level Named Entity Recognition Method With Distant Supervision" @default.
- W3171691821 cites W1979145089 @default.
- W3171691821 cites W1980928891 @default.
- W3171691821 cites W2015917093 @default.
- W3171691821 cites W2050626994 @default.
- W3171691821 cites W2593560537 @default.
- W3171691821 cites W2734608416 @default.
- W3171691821 cites W2891383691 @default.
- W3171691821 cites W2910668853 @default.
- W3171691821 cites W2936273339 @default.
- W3171691821 cites W2953010755 @default.
- W3171691821 cites W2962987552 @default.
- W3171691821 cites W2963341956 @default.
- W3171691821 cites W2990142167 @default.
- W3171691821 cites W2992843255 @default.
- W3171691821 cites W2997394673 @default.
- W3171691821 cites W3014279233 @default.
- W3171691821 cites W3048090083 @default.
- W3171691821 doi "https://doi.org/10.2196/28219" @default.
- W3171691821 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8240806" @default.
- W3171691821 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34125076" @default.
- W3171691821 hasPublicationYear "2021" @default.
- W3171691821 type Work @default.
- W3171691821 sameAs 3171691821 @default.
- W3171691821 citedByCount "3" @default.
- W3171691821 countsByYear W31716918212022 @default.
- W3171691821 countsByYear W31716918212023 @default.
- W3171691821 crossrefType "journal-article" @default.
- W3171691821 hasAuthorship W3171691821A5001633124 @default.
- W3171691821 hasAuthorship W3171691821A5024869142 @default.
- W3171691821 hasAuthorship W3171691821A5060692949 @default.
- W3171691821 hasAuthorship W3171691821A5064557021 @default.
- W3171691821 hasBestOaLocation W31716918211 @default.
- W3171691821 hasConcept C119857082 @default.
- W3171691821 hasConcept C124101348 @default.
- W3171691821 hasConcept C126322002 @default.
- W3171691821 hasConcept C126838900 @default.
- W3171691821 hasConcept C136389625 @default.
- W3171691821 hasConcept C142724271 @default.
- W3171691821 hasConcept C148524875 @default.
- W3171691821 hasConcept C153180895 @default.
- W3171691821 hasConcept C154945302 @default.
- W3171691821 hasConcept C162324750 @default.
- W3171691821 hasConcept C177264268 @default.
- W3171691821 hasConcept C187736073 @default.
- W3171691821 hasConcept C195910791 @default.
- W3171691821 hasConcept C199360897 @default.
- W3171691821 hasConcept C204321447 @default.
- W3171691821 hasConcept C2779135771 @default.
- W3171691821 hasConcept C2780451532 @default.
- W3171691821 hasConcept C40993552 @default.
- W3171691821 hasConcept C41008148 @default.
- W3171691821 hasConcept C50644808 @default.
- W3171691821 hasConcept C534262118 @default.
- W3171691821 hasConcept C71924100 @default.
- W3171691821 hasConcept C95623464 @default.
- W3171691821 hasConceptScore W3171691821C119857082 @default.
- W3171691821 hasConceptScore W3171691821C124101348 @default.
- W3171691821 hasConceptScore W3171691821C126322002 @default.
- W3171691821 hasConceptScore W3171691821C126838900 @default.
- W3171691821 hasConceptScore W3171691821C136389625 @default.
- W3171691821 hasConceptScore W3171691821C142724271 @default.
- W3171691821 hasConceptScore W3171691821C148524875 @default.
- W3171691821 hasConceptScore W3171691821C153180895 @default.
- W3171691821 hasConceptScore W3171691821C154945302 @default.
- W3171691821 hasConceptScore W3171691821C162324750 @default.
- W3171691821 hasConceptScore W3171691821C177264268 @default.
- W3171691821 hasConceptScore W3171691821C187736073 @default.
- W3171691821 hasConceptScore W3171691821C195910791 @default.
- W3171691821 hasConceptScore W3171691821C199360897 @default.
- W3171691821 hasConceptScore W3171691821C204321447 @default.
- W3171691821 hasConceptScore W3171691821C2779135771 @default.
- W3171691821 hasConceptScore W3171691821C2780451532 @default.
- W3171691821 hasConceptScore W3171691821C40993552 @default.
- W3171691821 hasConceptScore W3171691821C41008148 @default.
- W3171691821 hasConceptScore W3171691821C50644808 @default.
- W3171691821 hasConceptScore W3171691821C534262118 @default.
- W3171691821 hasConceptScore W3171691821C71924100 @default.
- W3171691821 hasConceptScore W3171691821C95623464 @default.
- W3171691821 hasIssue "6" @default.
- W3171691821 hasLocation W31716918211 @default.
- W3171691821 hasLocation W31716918212 @default.
- W3171691821 hasLocation W31716918213 @default.
- W3171691821 hasOpenAccess W3171691821 @default.
- W3171691821 hasPrimaryLocation W31716918211 @default.
- W3171691821 hasRelatedWork W147166030 @default.
- W3171691821 hasRelatedWork W2167244743 @default.
- W3171691821 hasRelatedWork W2921036759 @default.
- W3171691821 hasRelatedWork W2947903144 @default.
- W3171691821 hasRelatedWork W2947973524 @default.