Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171695847> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3171695847 endingPage "1651" @default.
- W3171695847 startingPage "1636" @default.
- W3171695847 abstract "This paper proposes a novel machine learning (ML) gyro calibration method that can achieve higher-accuracy gyro calibration and attitude estimation than the classical extended Kalman filter (EKF) approach when high-accuracy measurements are unavailable. The gyro calibration process is modeled as a time-series problem based on the standard EKF output. Then, a designed ML model is trained by the collected time-series data so that it can conduct gyro calibration by generating an ML correction to the gyro measurement. The proposed ML calibration method does not make assumptions in the form of gyro measurement errors, but directly learns it from data when high-accuracy information is available. Therefore, it is possible to outperform the EKF bias calibration when there is only low-accuracy information. To validate the method, a torque-free CubeSat is simulated using sun sensors and magnetometers to generate higher- and lower-accuracy attitude measurements, respectively. The simulation results show that the ML gyro calibration achieves smaller residual errors compared with the standard EKF. Meanwhile, the EKF attitude estimation accuracy is also improved, as the attitude integration is more accurate using the ML-calibrated gyro measurement. Four ML models based on different principles are examined, including multilayer perceptron, convolutional neural network, recurrent neural network, and Gaussian processes. It is found that, usually, a more sophisticated ML model can capture more gyro error information, but all four models can achieve similar performance with well-tuned parameters." @default.
- W3171695847 created "2021-06-22" @default.
- W3171695847 creator A5016674950 @default.
- W3171695847 creator A5074701004 @default.
- W3171695847 date "2021-11-01" @default.
- W3171695847 modified "2023-10-10" @default.
- W3171695847 title "Machine Learning Gyro Calibration Method Based on Attitude Estimation" @default.
- W3171695847 cites W1602164114 @default.
- W3171695847 cites W1757980361 @default.
- W3171695847 cites W2117102490 @default.
- W3171695847 cites W2607911044 @default.
- W3171695847 cites W2755498775 @default.
- W3171695847 cites W2884775584 @default.
- W3171695847 cites W2946813593 @default.
- W3171695847 cites W2971724044 @default.
- W3171695847 cites W2981326572 @default.
- W3171695847 cites W636927631 @default.
- W3171695847 doi "https://doi.org/10.2514/1.a34979" @default.
- W3171695847 hasPublicationYear "2021" @default.
- W3171695847 type Work @default.
- W3171695847 sameAs 3171695847 @default.
- W3171695847 citedByCount "1" @default.
- W3171695847 countsByYear W31716958472022 @default.
- W3171695847 crossrefType "journal-article" @default.
- W3171695847 hasAuthorship W3171695847A5016674950 @default.
- W3171695847 hasAuthorship W3171695847A5074701004 @default.
- W3171695847 hasConcept C105795698 @default.
- W3171695847 hasConcept C154945302 @default.
- W3171695847 hasConcept C157286648 @default.
- W3171695847 hasConcept C165838908 @default.
- W3171695847 hasConcept C179717631 @default.
- W3171695847 hasConcept C206833254 @default.
- W3171695847 hasConcept C2775924081 @default.
- W3171695847 hasConcept C33923547 @default.
- W3171695847 hasConcept C41008148 @default.
- W3171695847 hasConcept C47446073 @default.
- W3171695847 hasConcept C50644808 @default.
- W3171695847 hasConceptScore W3171695847C105795698 @default.
- W3171695847 hasConceptScore W3171695847C154945302 @default.
- W3171695847 hasConceptScore W3171695847C157286648 @default.
- W3171695847 hasConceptScore W3171695847C165838908 @default.
- W3171695847 hasConceptScore W3171695847C179717631 @default.
- W3171695847 hasConceptScore W3171695847C206833254 @default.
- W3171695847 hasConceptScore W3171695847C2775924081 @default.
- W3171695847 hasConceptScore W3171695847C33923547 @default.
- W3171695847 hasConceptScore W3171695847C41008148 @default.
- W3171695847 hasConceptScore W3171695847C47446073 @default.
- W3171695847 hasConceptScore W3171695847C50644808 @default.
- W3171695847 hasFunder F4320338279 @default.
- W3171695847 hasIssue "6" @default.
- W3171695847 hasLocation W31716958471 @default.
- W3171695847 hasOpenAccess W3171695847 @default.
- W3171695847 hasPrimaryLocation W31716958471 @default.
- W3171695847 hasRelatedWork W2020144404 @default.
- W3171695847 hasRelatedWork W2089114113 @default.
- W3171695847 hasRelatedWork W2103062922 @default.
- W3171695847 hasRelatedWork W2162299404 @default.
- W3171695847 hasRelatedWork W2243550366 @default.
- W3171695847 hasRelatedWork W2352634297 @default.
- W3171695847 hasRelatedWork W2389555968 @default.
- W3171695847 hasRelatedWork W3000407446 @default.
- W3171695847 hasRelatedWork W3158157485 @default.
- W3171695847 hasRelatedWork W80107739 @default.
- W3171695847 hasVolume "58" @default.
- W3171695847 isParatext "false" @default.
- W3171695847 isRetracted "false" @default.
- W3171695847 magId "3171695847" @default.
- W3171695847 workType "article" @default.