Matches in SemOpenAlex for { <https://semopenalex.org/work/W3171829097> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3171829097 endingPage "110454" @default.
- W3171829097 startingPage "110454" @default.
- W3171829097 abstract "In this study, temperature field estimation was performed via time-of-arrival measurements of acoustic waves and using machine learning. An axisymmetric combustion field created by a McKenna burner was chosen as the measurement region. Electrical discharges served as the acoustic point source, and the acoustic travel times were measured using microphones installed along the periphery of the measurement region. In particular, acoustic waves refract under a temperature gradient, which makes it difficult to obtain an explicit analytic expression for the solution. Hence, a model that predicts the profile from the acoustic travel times was acquired through machine learning. As the number of acoustic paths with different travel times was four, the radial temperature profile was first parameterized by four variables. Then, big data of acoustic travel times corresponding to a set of variable values were produced using a simulator that calculates acoustic trajectories and the corresponding travel times. Finally, the model, in the form of the simplest artificial neural network with a single hidden layer, was trained with the generated big data. The temperature fields were obtained from the measured acoustic travel times using the model and found to match well with those measured using a thermocouple." @default.
- W3171829097 created "2021-06-22" @default.
- W3171829097 creator A5008798294 @default.
- W3171829097 creator A5055351043 @default.
- W3171829097 creator A5057632763 @default.
- W3171829097 creator A5072669883 @default.
- W3171829097 creator A5075859638 @default.
- W3171829097 creator A5084643614 @default.
- W3171829097 date "2021-11-01" @default.
- W3171829097 modified "2023-09-23" @default.
- W3171829097 title "Temperature field estimation of an axisymmetric laminar flame via time-of-arrival measurements of acoustic waves, and machine learning" @default.
- W3171829097 cites W1988115241 @default.
- W3171829097 cites W1993599622 @default.
- W3171829097 cites W2000251391 @default.
- W3171829097 cites W2004877012 @default.
- W3171829097 cites W2010331594 @default.
- W3171829097 cites W2026131661 @default.
- W3171829097 cites W2034862970 @default.
- W3171829097 cites W2040112768 @default.
- W3171829097 cites W2055697826 @default.
- W3171829097 cites W2065182739 @default.
- W3171829097 cites W2074525033 @default.
- W3171829097 cites W2103496339 @default.
- W3171829097 cites W2111072639 @default.
- W3171829097 cites W2111406701 @default.
- W3171829097 cites W2123918241 @default.
- W3171829097 cites W2131288259 @default.
- W3171829097 cites W2146687664 @default.
- W3171829097 cites W2171641626 @default.
- W3171829097 cites W2592245087 @default.
- W3171829097 cites W2615787079 @default.
- W3171829097 cites W2746117386 @default.
- W3171829097 cites W2944360697 @default.
- W3171829097 cites W2963795517 @default.
- W3171829097 cites W2974328510 @default.
- W3171829097 cites W2990870162 @default.
- W3171829097 cites W3037114450 @default.
- W3171829097 cites W2783389675 @default.
- W3171829097 doi "https://doi.org/10.1016/j.expthermflusci.2021.110454" @default.
- W3171829097 hasPublicationYear "2021" @default.
- W3171829097 type Work @default.
- W3171829097 sameAs 3171829097 @default.
- W3171829097 citedByCount "8" @default.
- W3171829097 countsByYear W31718290972022 @default.
- W3171829097 countsByYear W31718290972023 @default.
- W3171829097 crossrefType "journal-article" @default.
- W3171829097 hasAuthorship W3171829097A5008798294 @default.
- W3171829097 hasAuthorship W3171829097A5055351043 @default.
- W3171829097 hasAuthorship W3171829097A5057632763 @default.
- W3171829097 hasAuthorship W3171829097A5072669883 @default.
- W3171829097 hasAuthorship W3171829097A5075859638 @default.
- W3171829097 hasAuthorship W3171829097A5084643614 @default.
- W3171829097 hasConcept C121332964 @default.
- W3171829097 hasConcept C145589544 @default.
- W3171829097 hasConcept C154945302 @default.
- W3171829097 hasConcept C168068576 @default.
- W3171829097 hasConcept C204723758 @default.
- W3171829097 hasConcept C24890656 @default.
- W3171829097 hasConcept C41008148 @default.
- W3171829097 hasConcept C50644808 @default.
- W3171829097 hasConcept C62520636 @default.
- W3171829097 hasConceptScore W3171829097C121332964 @default.
- W3171829097 hasConceptScore W3171829097C145589544 @default.
- W3171829097 hasConceptScore W3171829097C154945302 @default.
- W3171829097 hasConceptScore W3171829097C168068576 @default.
- W3171829097 hasConceptScore W3171829097C204723758 @default.
- W3171829097 hasConceptScore W3171829097C24890656 @default.
- W3171829097 hasConceptScore W3171829097C41008148 @default.
- W3171829097 hasConceptScore W3171829097C50644808 @default.
- W3171829097 hasConceptScore W3171829097C62520636 @default.
- W3171829097 hasFunder F4320332195 @default.
- W3171829097 hasLocation W31718290971 @default.
- W3171829097 hasOpenAccess W3171829097 @default.
- W3171829097 hasPrimaryLocation W31718290971 @default.
- W3171829097 hasRelatedWork W1626238467 @default.
- W3171829097 hasRelatedWork W1985657667 @default.
- W3171829097 hasRelatedWork W2094747220 @default.
- W3171829097 hasRelatedWork W2100466463 @default.
- W3171829097 hasRelatedWork W2224037598 @default.
- W3171829097 hasRelatedWork W2268375905 @default.
- W3171829097 hasRelatedWork W2353171666 @default.
- W3171829097 hasRelatedWork W2958036836 @default.
- W3171829097 hasRelatedWork W4205769608 @default.
- W3171829097 hasRelatedWork W4248716364 @default.
- W3171829097 hasVolume "129" @default.
- W3171829097 isParatext "false" @default.
- W3171829097 isRetracted "false" @default.
- W3171829097 magId "3171829097" @default.
- W3171829097 workType "article" @default.