Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172000794> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3172000794 abstract "The paper proposes a novel multiple-model (hybrid) deep learning architecture for the task of hand gesture recognition based on multi-channel surface Electromyography (sEMG) signals. By capitalizing on the recent success of multiple-modeling approaches, the proposed architecture integrates two deep learning models simultaneously and in a parallel fashion. The designed architecture is different from the majority of existing data-driven models for the task of hand gesture recognition, which are commonly developed based on a stand-alone deep model and can hardly provide robustness across different scenarios. More specifically, the proposed hybrid solution consists of two parallel paths, i.e., one Long-Short Term Memory (LSTM) model and one Convolutional Neural Networks (CNN) path, followed by a fully connected multilayer fusion network acting as the fusion centre combining the outputs of the two paths to perform the classification task. The LSTM path is utilized to extract temporal features while simultaneously the CNN path is used to extract spatial features. The proposed hybrid architecture is evaluated based on the NinaPro DB2 dataset. Our comprehensive set of experiments and comparisons with state-of-the-art approaches obtained over the same dataset shows that the proposed architecture significantly outperforms its counterparts and achieves exceptionally high classification performance of 98.01." @default.
- W3172000794 created "2021-06-22" @default.
- W3172000794 creator A5045542279 @default.
- W3172000794 creator A5058253407 @default.
- W3172000794 creator A5059155086 @default.
- W3172000794 creator A5074844055 @default.
- W3172000794 date "2020-11-01" @default.
- W3172000794 modified "2023-09-25" @default.
- W3172000794 title "Hybrid Deep Neural Networks for Sparse Surface EMG-Based Hand Gesture Recognition" @default.
- W3172000794 cites W2123167643 @default.
- W3172000794 cites W2169931829 @default.
- W3172000794 cites W2516710120 @default.
- W3172000794 cites W2555541061 @default.
- W3172000794 cites W2807631444 @default.
- W3172000794 cites W2884201223 @default.
- W3172000794 cites W2887224044 @default.
- W3172000794 cites W2898716605 @default.
- W3172000794 cites W2911956695 @default.
- W3172000794 cites W2962879438 @default.
- W3172000794 doi "https://doi.org/10.1109/ieeeconf51394.2020.9443400" @default.
- W3172000794 hasPublicationYear "2020" @default.
- W3172000794 type Work @default.
- W3172000794 sameAs 3172000794 @default.
- W3172000794 citedByCount "1" @default.
- W3172000794 countsByYear W31720007942022 @default.
- W3172000794 crossrefType "proceedings-article" @default.
- W3172000794 hasAuthorship W3172000794A5045542279 @default.
- W3172000794 hasAuthorship W3172000794A5058253407 @default.
- W3172000794 hasAuthorship W3172000794A5059155086 @default.
- W3172000794 hasAuthorship W3172000794A5074844055 @default.
- W3172000794 hasConcept C104317684 @default.
- W3172000794 hasConcept C108583219 @default.
- W3172000794 hasConcept C119857082 @default.
- W3172000794 hasConcept C123657996 @default.
- W3172000794 hasConcept C127413603 @default.
- W3172000794 hasConcept C142362112 @default.
- W3172000794 hasConcept C153180895 @default.
- W3172000794 hasConcept C153349607 @default.
- W3172000794 hasConcept C154945302 @default.
- W3172000794 hasConcept C159437735 @default.
- W3172000794 hasConcept C185592680 @default.
- W3172000794 hasConcept C201995342 @default.
- W3172000794 hasConcept C207347870 @default.
- W3172000794 hasConcept C2780451532 @default.
- W3172000794 hasConcept C28490314 @default.
- W3172000794 hasConcept C41008148 @default.
- W3172000794 hasConcept C55493867 @default.
- W3172000794 hasConcept C63479239 @default.
- W3172000794 hasConcept C81363708 @default.
- W3172000794 hasConceptScore W3172000794C104317684 @default.
- W3172000794 hasConceptScore W3172000794C108583219 @default.
- W3172000794 hasConceptScore W3172000794C119857082 @default.
- W3172000794 hasConceptScore W3172000794C123657996 @default.
- W3172000794 hasConceptScore W3172000794C127413603 @default.
- W3172000794 hasConceptScore W3172000794C142362112 @default.
- W3172000794 hasConceptScore W3172000794C153180895 @default.
- W3172000794 hasConceptScore W3172000794C153349607 @default.
- W3172000794 hasConceptScore W3172000794C154945302 @default.
- W3172000794 hasConceptScore W3172000794C159437735 @default.
- W3172000794 hasConceptScore W3172000794C185592680 @default.
- W3172000794 hasConceptScore W3172000794C201995342 @default.
- W3172000794 hasConceptScore W3172000794C207347870 @default.
- W3172000794 hasConceptScore W3172000794C2780451532 @default.
- W3172000794 hasConceptScore W3172000794C28490314 @default.
- W3172000794 hasConceptScore W3172000794C41008148 @default.
- W3172000794 hasConceptScore W3172000794C55493867 @default.
- W3172000794 hasConceptScore W3172000794C63479239 @default.
- W3172000794 hasConceptScore W3172000794C81363708 @default.
- W3172000794 hasLocation W31720007941 @default.
- W3172000794 hasOpenAccess W3172000794 @default.
- W3172000794 hasPrimaryLocation W31720007941 @default.
- W3172000794 hasRelatedWork W1033489 @default.
- W3172000794 hasRelatedWork W10684775 @default.
- W3172000794 hasRelatedWork W1341358 @default.
- W3172000794 hasRelatedWork W1889328 @default.
- W3172000794 hasRelatedWork W2583009 @default.
- W3172000794 hasRelatedWork W3817842 @default.
- W3172000794 hasRelatedWork W3856460 @default.
- W3172000794 hasRelatedWork W572296 @default.
- W3172000794 hasRelatedWork W7934318 @default.
- W3172000794 hasRelatedWork W954322 @default.
- W3172000794 isParatext "false" @default.
- W3172000794 isRetracted "false" @default.
- W3172000794 magId "3172000794" @default.
- W3172000794 workType "article" @default.