Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172017684> ?p ?o ?g. }
- W3172017684 endingPage "3911" @default.
- W3172017684 startingPage "3911" @default.
- W3172017684 abstract "Environmental monitoring of aquatic systems is the key requirement for sustainable environmental protection and future drinking water supply. The quality of water resources depends on the effectiveness of water treatment plants to reduce chemical pollutants, such as nitrates, pharmaceuticals, or microplastics. Changes in water quality can vary rapidly and must be monitored in real-time, enabling immediate action. In this study, we test the feasibility of a deep UV Raman spectrometer for the detection of nitrate/nitrite, selected pharmaceuticals and the most widespread microplastic polymers. Software utilizing artificial intelligence, such as a convolutional neural network, is trained for recognizing typical spectral patterns of individual pollutants, once processed by mathematical filters and machine learning algorithms. The results of an initial experimental study show that nitrates and nitrites can be detected and quantified. The detection of nitrates poses some challenges due to the noise-to-signal ratio and background and related noise due to water or other materials. Selected pharmaceutical substances could be detected via Raman spectroscopy, but not at concentrations in the µg/l or ng/l range. Microplastic particles are non-soluble substances and can be detected and identified, but the measurements suffer from the heterogeneous distribution of the microparticles in flow experiments." @default.
- W3172017684 created "2021-06-22" @default.
- W3172017684 creator A5005213503 @default.
- W3172017684 creator A5010504033 @default.
- W3172017684 creator A5013384731 @default.
- W3172017684 creator A5021520109 @default.
- W3172017684 creator A5035295143 @default.
- W3172017684 creator A5036838034 @default.
- W3172017684 creator A5047545892 @default.
- W3172017684 creator A5051505688 @default.
- W3172017684 creator A5060170905 @default.
- W3172017684 creator A5069056906 @default.
- W3172017684 creator A5073382048 @default.
- W3172017684 creator A5076559342 @default.
- W3172017684 creator A5076591776 @default.
- W3172017684 creator A5077553699 @default.
- W3172017684 date "2021-06-05" @default.
- W3172017684 modified "2023-10-02" @default.
- W3172017684 title "Application of Laser-Induced, Deep UV Raman Spectroscopy and Artificial Intelligence in Real-Time Environmental Monitoring—Solutions and First Results" @default.
- W3172017684 cites W1977103213 @default.
- W3172017684 cites W1986326089 @default.
- W3172017684 cites W2000394431 @default.
- W3172017684 cites W2005404508 @default.
- W3172017684 cites W2016261058 @default.
- W3172017684 cites W2044256901 @default.
- W3172017684 cites W2110358518 @default.
- W3172017684 cites W2134877526 @default.
- W3172017684 cites W2153809210 @default.
- W3172017684 cites W2339388736 @default.
- W3172017684 cites W2605417893 @default.
- W3172017684 cites W2752532133 @default.
- W3172017684 cites W2765786242 @default.
- W3172017684 cites W2791931380 @default.
- W3172017684 cites W2805849778 @default.
- W3172017684 cites W2937900856 @default.
- W3172017684 cites W2981532413 @default.
- W3172017684 cites W2996122115 @default.
- W3172017684 cites W2999277653 @default.
- W3172017684 cites W2999597969 @default.
- W3172017684 cites W3007067473 @default.
- W3172017684 cites W3011916771 @default.
- W3172017684 cites W3014724590 @default.
- W3172017684 cites W3016921169 @default.
- W3172017684 cites W3022583642 @default.
- W3172017684 cites W3042786529 @default.
- W3172017684 cites W3110149222 @default.
- W3172017684 doi "https://doi.org/10.3390/s21113911" @default.
- W3172017684 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8201312" @default.
- W3172017684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34198916" @default.
- W3172017684 hasPublicationYear "2021" @default.
- W3172017684 type Work @default.
- W3172017684 sameAs 3172017684 @default.
- W3172017684 citedByCount "13" @default.
- W3172017684 countsByYear W31720176842021 @default.
- W3172017684 countsByYear W31720176842022 @default.
- W3172017684 countsByYear W31720176842023 @default.
- W3172017684 crossrefType "journal-article" @default.
- W3172017684 hasAuthorship W3172017684A5005213503 @default.
- W3172017684 hasAuthorship W3172017684A5010504033 @default.
- W3172017684 hasAuthorship W3172017684A5013384731 @default.
- W3172017684 hasAuthorship W3172017684A5021520109 @default.
- W3172017684 hasAuthorship W3172017684A5035295143 @default.
- W3172017684 hasAuthorship W3172017684A5036838034 @default.
- W3172017684 hasAuthorship W3172017684A5047545892 @default.
- W3172017684 hasAuthorship W3172017684A5051505688 @default.
- W3172017684 hasAuthorship W3172017684A5060170905 @default.
- W3172017684 hasAuthorship W3172017684A5069056906 @default.
- W3172017684 hasAuthorship W3172017684A5073382048 @default.
- W3172017684 hasAuthorship W3172017684A5076559342 @default.
- W3172017684 hasAuthorship W3172017684A5076591776 @default.
- W3172017684 hasAuthorship W3172017684A5077553699 @default.
- W3172017684 hasBestOaLocation W31720176841 @default.
- W3172017684 hasConcept C107872376 @default.
- W3172017684 hasConcept C120665830 @default.
- W3172017684 hasConcept C121332964 @default.
- W3172017684 hasConcept C178790620 @default.
- W3172017684 hasConcept C185592680 @default.
- W3172017684 hasConcept C18903297 @default.
- W3172017684 hasConcept C2776179834 @default.
- W3172017684 hasConcept C2776384668 @default.
- W3172017684 hasConcept C2780797713 @default.
- W3172017684 hasConcept C39432304 @default.
- W3172017684 hasConcept C40003534 @default.
- W3172017684 hasConcept C82685317 @default.
- W3172017684 hasConcept C86803240 @default.
- W3172017684 hasConceptScore W3172017684C107872376 @default.
- W3172017684 hasConceptScore W3172017684C120665830 @default.
- W3172017684 hasConceptScore W3172017684C121332964 @default.
- W3172017684 hasConceptScore W3172017684C178790620 @default.
- W3172017684 hasConceptScore W3172017684C185592680 @default.
- W3172017684 hasConceptScore W3172017684C18903297 @default.
- W3172017684 hasConceptScore W3172017684C2776179834 @default.
- W3172017684 hasConceptScore W3172017684C2776384668 @default.
- W3172017684 hasConceptScore W3172017684C2780797713 @default.
- W3172017684 hasConceptScore W3172017684C39432304 @default.
- W3172017684 hasConceptScore W3172017684C40003534 @default.
- W3172017684 hasConceptScore W3172017684C82685317 @default.
- W3172017684 hasConceptScore W3172017684C86803240 @default.