Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172111323> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3172111323 endingPage "012021" @default.
- W3172111323 startingPage "012021" @default.
- W3172111323 abstract "The count data of health service visits can be modeled into Poisson regression analysis, where there is no overdispersion assumption by looking at the comparison between mean and variance. The overdispersion test is performed by using the ratio of the sum of Pearson residuals over the number of degrees of freedom that must be less than one. The overdispersion problem can be corrected accurately by building mixture distribution where the parameter of Poisson distribution is made to have Negative Binomial distribution as the theoretical model. The data used in this study are the number of visits to public health service at Padang city as many as 460 data, where the predictor variables are age, gender, education level, occupation, income, home health status, individual health status, health insurance type, distance to health service, and diet type. The best model of negative binomial regression is selected by considering the values of AIC, BIC, Log-likelihood, and overdispersion tests that occur between the resulting models. The final result of this count data model with negative binomial regression fits better and overcomes the overdispersion problem with the significant variable is individual health status for this population, and it can be explained that the more individual has a history of having severe illness the more often the number of visits to the health service, meanwhile the other predictor variables have no effect to the number of visits." @default.
- W3172111323 created "2021-06-22" @default.
- W3172111323 creator A5004747244 @default.
- W3172111323 creator A5010654856 @default.
- W3172111323 creator A5037290296 @default.
- W3172111323 creator A5087718133 @default.
- W3172111323 date "2021-06-01" @default.
- W3172111323 modified "2023-09-25" @default.
- W3172111323 title "Modeling the Count Data of Public Health Service Visits with Overdispersion Problem by Using Negative Binomial Regression" @default.
- W3172111323 cites W1973324677 @default.
- W3172111323 cites W1992616610 @default.
- W3172111323 cites W1995765128 @default.
- W3172111323 cites W2179922401 @default.
- W3172111323 cites W2511117685 @default.
- W3172111323 cites W2772575140 @default.
- W3172111323 cites W2789575653 @default.
- W3172111323 cites W2913722695 @default.
- W3172111323 cites W2956032227 @default.
- W3172111323 cites W2963953113 @default.
- W3172111323 cites W2977432823 @default.
- W3172111323 doi "https://doi.org/10.1088/1742-6596/1940/1/012021" @default.
- W3172111323 hasPublicationYear "2021" @default.
- W3172111323 type Work @default.
- W3172111323 sameAs 3172111323 @default.
- W3172111323 citedByCount "0" @default.
- W3172111323 crossrefType "journal-article" @default.
- W3172111323 hasAuthorship W3172111323A5004747244 @default.
- W3172111323 hasAuthorship W3172111323A5010654856 @default.
- W3172111323 hasAuthorship W3172111323A5037290296 @default.
- W3172111323 hasAuthorship W3172111323A5087718133 @default.
- W3172111323 hasBestOaLocation W31721113231 @default.
- W3172111323 hasConcept C100906024 @default.
- W3172111323 hasConcept C105795698 @default.
- W3172111323 hasConcept C117236510 @default.
- W3172111323 hasConcept C149782125 @default.
- W3172111323 hasConcept C152877465 @default.
- W3172111323 hasConcept C199335787 @default.
- W3172111323 hasConcept C27574286 @default.
- W3172111323 hasConcept C2908647359 @default.
- W3172111323 hasConcept C33643355 @default.
- W3172111323 hasConcept C33923547 @default.
- W3172111323 hasConcept C71924100 @default.
- W3172111323 hasConcept C73269764 @default.
- W3172111323 hasConcept C91025261 @default.
- W3172111323 hasConcept C99454951 @default.
- W3172111323 hasConceptScore W3172111323C100906024 @default.
- W3172111323 hasConceptScore W3172111323C105795698 @default.
- W3172111323 hasConceptScore W3172111323C117236510 @default.
- W3172111323 hasConceptScore W3172111323C149782125 @default.
- W3172111323 hasConceptScore W3172111323C152877465 @default.
- W3172111323 hasConceptScore W3172111323C199335787 @default.
- W3172111323 hasConceptScore W3172111323C27574286 @default.
- W3172111323 hasConceptScore W3172111323C2908647359 @default.
- W3172111323 hasConceptScore W3172111323C33643355 @default.
- W3172111323 hasConceptScore W3172111323C33923547 @default.
- W3172111323 hasConceptScore W3172111323C71924100 @default.
- W3172111323 hasConceptScore W3172111323C73269764 @default.
- W3172111323 hasConceptScore W3172111323C91025261 @default.
- W3172111323 hasConceptScore W3172111323C99454951 @default.
- W3172111323 hasIssue "1" @default.
- W3172111323 hasLocation W31721113231 @default.
- W3172111323 hasOpenAccess W3172111323 @default.
- W3172111323 hasPrimaryLocation W31721113231 @default.
- W3172111323 hasRelatedWork W10098965 @default.
- W3172111323 hasRelatedWork W12663077 @default.
- W3172111323 hasRelatedWork W16324593 @default.
- W3172111323 hasRelatedWork W31347935 @default.
- W3172111323 hasRelatedWork W31711046 @default.
- W3172111323 hasRelatedWork W34198851 @default.
- W3172111323 hasRelatedWork W40663346 @default.
- W3172111323 hasRelatedWork W4439945 @default.
- W3172111323 hasRelatedWork W525550 @default.
- W3172111323 hasRelatedWork W6784639 @default.
- W3172111323 hasVolume "1940" @default.
- W3172111323 isParatext "false" @default.
- W3172111323 isRetracted "false" @default.
- W3172111323 magId "3172111323" @default.
- W3172111323 workType "article" @default.