Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172236574> ?p ?o ?g. }
- W3172236574 endingPage "1613" @default.
- W3172236574 startingPage "1590" @default.
- W3172236574 abstract "Peer-to-peer (P2P) lending is an emerging field in FinTech and is an alternative source of personal loans. However, P2P lending faces severe credit risk due to high information asymmetry and insufficient collateral. We develop a novel heterogeneous stacking ensemble (HSE) approach by using two real-world datasets to improve the loss given default (LGD) forecasting in the P2P lending domain. Some special data in P2P lending and macroeconomic variables are employed as supplementary data sources to further enhance the model performance. Our proposal is compared with several popular models, including parametric and non-parametric ones, in terms of predictive accuracy and capital requirement. Our finding reveals that special data in P2P lending (e.g., number of investors and loan description) and macroeconomic variables are powerful predictors of LGD in P2P lending. The proposed HSE model outperforms the benchmark models in most cases and significantly achieves optimal average ranks across all the evaluation metrics. The results remain robust under several validations." @default.
- W3172236574 created "2021-06-22" @default.
- W3172236574 creator A5021319450 @default.
- W3172236574 creator A5029096404 @default.
- W3172236574 creator A5045824104 @default.
- W3172236574 creator A5053890256 @default.
- W3172236574 creator A5057946457 @default.
- W3172236574 date "2021-10-01" @default.
- W3172236574 modified "2023-10-14" @default.
- W3172236574 title "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach" @default.
- W3172236574 cites W1551381317 @default.
- W3172236574 cites W1836875240 @default.
- W3172236574 cites W1968831178 @default.
- W3172236574 cites W1972833916 @default.
- W3172236574 cites W1977007832 @default.
- W3172236574 cites W1977009091 @default.
- W3172236574 cites W1978612790 @default.
- W3172236574 cites W1980573833 @default.
- W3172236574 cites W1992958333 @default.
- W3172236574 cites W1994927285 @default.
- W3172236574 cites W2001923412 @default.
- W3172236574 cites W2004076523 @default.
- W3172236574 cites W2018188846 @default.
- W3172236574 cites W2018730525 @default.
- W3172236574 cites W2023294425 @default.
- W3172236574 cites W2031339922 @default.
- W3172236574 cites W2043077358 @default.
- W3172236574 cites W2044722928 @default.
- W3172236574 cites W2046696485 @default.
- W3172236574 cites W2056528415 @default.
- W3172236574 cites W2068769119 @default.
- W3172236574 cites W2074463640 @default.
- W3172236574 cites W2077372486 @default.
- W3172236574 cites W2091687672 @default.
- W3172236574 cites W2100128988 @default.
- W3172236574 cites W2112617969 @default.
- W3172236574 cites W2126147689 @default.
- W3172236574 cites W2131816657 @default.
- W3172236574 cites W2135293965 @default.
- W3172236574 cites W2145940431 @default.
- W3172236574 cites W2147002471 @default.
- W3172236574 cites W2151036863 @default.
- W3172236574 cites W2151554678 @default.
- W3172236574 cites W2154948784 @default.
- W3172236574 cites W2162397980 @default.
- W3172236574 cites W2165466912 @default.
- W3172236574 cites W2185712725 @default.
- W3172236574 cites W2215139283 @default.
- W3172236574 cites W2230049528 @default.
- W3172236574 cites W2253923269 @default.
- W3172236574 cites W2296034778 @default.
- W3172236574 cites W2586297576 @default.
- W3172236574 cites W2590884048 @default.
- W3172236574 cites W2606087171 @default.
- W3172236574 cites W2613872131 @default.
- W3172236574 cites W2700766797 @default.
- W3172236574 cites W2747436277 @default.
- W3172236574 cites W2761700016 @default.
- W3172236574 cites W2782788926 @default.
- W3172236574 cites W2794311872 @default.
- W3172236574 cites W2794349255 @default.
- W3172236574 cites W2794512781 @default.
- W3172236574 cites W2803273200 @default.
- W3172236574 cites W28412257 @default.
- W3172236574 cites W2885442465 @default.
- W3172236574 cites W2891295587 @default.
- W3172236574 cites W2896170683 @default.
- W3172236574 cites W2961766737 @default.
- W3172236574 cites W2966139567 @default.
- W3172236574 cites W3121716587 @default.
- W3172236574 cites W3122051380 @default.
- W3172236574 cites W3123223673 @default.
- W3172236574 cites W3123748919 @default.
- W3172236574 cites W3123936692 @default.
- W3172236574 cites W3124284538 @default.
- W3172236574 cites W430137803 @default.
- W3172236574 doi "https://doi.org/10.1016/j.ijforecast.2021.03.002" @default.
- W3172236574 hasPublicationYear "2021" @default.
- W3172236574 type Work @default.
- W3172236574 sameAs 3172236574 @default.
- W3172236574 citedByCount "11" @default.
- W3172236574 countsByYear W31722365742022 @default.
- W3172236574 countsByYear W31722365742023 @default.
- W3172236574 crossrefType "journal-article" @default.
- W3172236574 hasAuthorship W3172236574A5021319450 @default.
- W3172236574 hasAuthorship W3172236574A5029096404 @default.
- W3172236574 hasAuthorship W3172236574A5045824104 @default.
- W3172236574 hasAuthorship W3172236574A5053890256 @default.
- W3172236574 hasAuthorship W3172236574A5057946457 @default.
- W3172236574 hasConcept C10138342 @default.
- W3172236574 hasConcept C105795698 @default.
- W3172236574 hasConcept C117251300 @default.
- W3172236574 hasConcept C13280743 @default.
- W3172236574 hasConcept C133930124 @default.
- W3172236574 hasConcept C149782125 @default.
- W3172236574 hasConcept C162118730 @default.
- W3172236574 hasConcept C162324750 @default.
- W3172236574 hasConcept C175444787 @default.