Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172289404> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3172289404 endingPage "e18025" @default.
- W3172289404 startingPage "e18025" @default.
- W3172289404 abstract "e18025 Background: The current approach to neck treatment in clinical T1-2 oral cancers is to offer elective nodal dissection to all patients, despite the fact that the majority of patients are pathologically node negative. This is due to the poor predictive ability of clinico-radiological assessment and subsequently poorer survival in those in whom neck dissection is omitted based on this. A robust prediction model for pathological nodal status may allow individualized decisions for neck dissection. Our aim was to develop a multiparameter prediction model to identify pathological node-negative status using machine learning. Methods: We identified 497 patients with cT1-2 oral cancer from a single institutional database from 2011-2018 who underwent primary resection and neck dissection. We compared the sensitivity, positive predictive value and accuracy of prediction of pathologically negative neck from clinico-radiological staging alone vs. a model created from multiple parameters including clinical features (clinico-radiological nodal status, ages, sex, subsite of primary lesion) and pathological features of the resected primary tumor (maximum dimension, depth of invasion, lymphovascular invasion, perineural invasion, grade and margins of resection). The multiparameter model was built from a training dataset of the first 400 patients using an ensemble of logistic regression, random forests and support vector machines. A cohort of 97 patients was used for independent validation. Results: In this cohort 232 (47%) were clinico-radiologically node negative, while 307(62%) were pathologically node negative. The sensitivity, positive predictive value and accuracy of the clinico-radiologically assigned nodal status was 56%, 74% and 61%, while that of the multiparameter machine learning model was 87%, 89% and 89% respectively. The area under curve (AUC) of the clinico-radiological prediction was 0.62 whereas that of the multiparameter predictive model was 0.91. In the validation dataset, 58/62 pathologically node negative patients were predicted correctly by the model. The accuracy of the model on the external validation dataset was 82%. Conclusions: The performance of the multiparameter predictive model was considerably superior to clinico-radiological neck staging for prediction of pathological node negative neck. This could be validated on an independent dataset. This could be considered for prospective clinical evaluation of individualized neck dissection." @default.
- W3172289404 created "2021-06-22" @default.
- W3172289404 creator A5008637823 @default.
- W3172289404 creator A5071605264 @default.
- W3172289404 creator A5078816338 @default.
- W3172289404 creator A5085420736 @default.
- W3172289404 date "2021-05-20" @default.
- W3172289404 modified "2023-09-23" @default.
- W3172289404 title "A multiparameter model for prediction of pathological nodal status in clinically early stage oral cancer using machine learning." @default.
- W3172289404 doi "https://doi.org/10.1200/jco.2021.39.15_suppl.e18025" @default.
- W3172289404 hasPublicationYear "2021" @default.
- W3172289404 type Work @default.
- W3172289404 sameAs 3172289404 @default.
- W3172289404 citedByCount "0" @default.
- W3172289404 crossrefType "journal-article" @default.
- W3172289404 hasAuthorship W3172289404A5008637823 @default.
- W3172289404 hasAuthorship W3172289404A5071605264 @default.
- W3172289404 hasAuthorship W3172289404A5078816338 @default.
- W3172289404 hasAuthorship W3172289404A5085420736 @default.
- W3172289404 hasConcept C121608353 @default.
- W3172289404 hasConcept C126322002 @default.
- W3172289404 hasConcept C126838900 @default.
- W3172289404 hasConcept C143998085 @default.
- W3172289404 hasConcept C146357865 @default.
- W3172289404 hasConcept C151730666 @default.
- W3172289404 hasConcept C151956035 @default.
- W3172289404 hasConcept C190892606 @default.
- W3172289404 hasConcept C207886595 @default.
- W3172289404 hasConcept C2777154038 @default.
- W3172289404 hasConcept C2778740770 @default.
- W3172289404 hasConcept C2779013556 @default.
- W3172289404 hasConcept C2780091936 @default.
- W3172289404 hasConcept C71924100 @default.
- W3172289404 hasConcept C72563966 @default.
- W3172289404 hasConcept C86803240 @default.
- W3172289404 hasConceptScore W3172289404C121608353 @default.
- W3172289404 hasConceptScore W3172289404C126322002 @default.
- W3172289404 hasConceptScore W3172289404C126838900 @default.
- W3172289404 hasConceptScore W3172289404C143998085 @default.
- W3172289404 hasConceptScore W3172289404C146357865 @default.
- W3172289404 hasConceptScore W3172289404C151730666 @default.
- W3172289404 hasConceptScore W3172289404C151956035 @default.
- W3172289404 hasConceptScore W3172289404C190892606 @default.
- W3172289404 hasConceptScore W3172289404C207886595 @default.
- W3172289404 hasConceptScore W3172289404C2777154038 @default.
- W3172289404 hasConceptScore W3172289404C2778740770 @default.
- W3172289404 hasConceptScore W3172289404C2779013556 @default.
- W3172289404 hasConceptScore W3172289404C2780091936 @default.
- W3172289404 hasConceptScore W3172289404C71924100 @default.
- W3172289404 hasConceptScore W3172289404C72563966 @default.
- W3172289404 hasConceptScore W3172289404C86803240 @default.
- W3172289404 hasIssue "15_suppl" @default.
- W3172289404 hasLocation W31722894041 @default.
- W3172289404 hasOpenAccess W3172289404 @default.
- W3172289404 hasPrimaryLocation W31722894041 @default.
- W3172289404 hasRelatedWork W2065626703 @default.
- W3172289404 hasRelatedWork W2107960772 @default.
- W3172289404 hasRelatedWork W2280894926 @default.
- W3172289404 hasRelatedWork W2608667084 @default.
- W3172289404 hasRelatedWork W2891753479 @default.
- W3172289404 hasRelatedWork W3168981837 @default.
- W3172289404 hasRelatedWork W3169739871 @default.
- W3172289404 hasRelatedWork W3210433532 @default.
- W3172289404 hasRelatedWork W4200488637 @default.
- W3172289404 hasRelatedWork W4366351644 @default.
- W3172289404 hasVolume "39" @default.
- W3172289404 isParatext "false" @default.
- W3172289404 isRetracted "false" @default.
- W3172289404 magId "3172289404" @default.
- W3172289404 workType "article" @default.