Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172339486> ?p ?o ?g. }
- W3172339486 endingPage "2165" @default.
- W3172339486 startingPage "2165" @default.
- W3172339486 abstract "As an important land surface vegetation parameter, fractional vegetation cover (FVC) has been widely used in many Earth system ecological and climate models. In particular, high-quality and reliable FVC products on the global scale are important for the Earth surface process simulation and global change studies. Recently, the FengYun-3 (FY-3) series satellites, which are the second generation of Chinese meteorological satellites, launched with the polar orbit and provide continuous land surface observations on a global scale. However, there is rare studying on the FVC estimation using FY-3 reflectance data. Therefore, the FY-3B reflectance data were selected as the representative data to develop a FVC estimation algorithm in this study, which would investigate the capability of the FY-3 reflectance data on the global FVC estimation. The spatial–temporal validation over the regional area indicated that the FVC estimations generated by the proposed algorithm had reliable continuities. Furthermore, a satisfactory accuracy performance (R2 = 0.7336, RMSE = 0.1288) was achieved for the proposed algorithm based on the Earth Observation LABoratory (EOLAB) reference FVC data, which provided further evidence on the reliability and robustness of the proposed algorithm. All these results indicated that the FY-3 reflectance data were capable of generating a FVC estimation with reliable spatial–temporal continuities and accuracy." @default.
- W3172339486 created "2021-06-22" @default.
- W3172339486 creator A5019004092 @default.
- W3172339486 creator A5022724601 @default.
- W3172339486 creator A5029107736 @default.
- W3172339486 creator A5033418882 @default.
- W3172339486 creator A5046253787 @default.
- W3172339486 creator A5063493372 @default.
- W3172339486 creator A5068252474 @default.
- W3172339486 creator A5080280424 @default.
- W3172339486 creator A5085883202 @default.
- W3172339486 date "2021-05-31" @default.
- W3172339486 modified "2023-10-18" @default.
- W3172339486 title "Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random Forest Regression Method" @default.
- W3172339486 cites W1756959272 @default.
- W3172339486 cites W1967395374 @default.
- W3172339486 cites W1978160572 @default.
- W3172339486 cites W1985625136 @default.
- W3172339486 cites W1995103915 @default.
- W3172339486 cites W1999512103 @default.
- W3172339486 cites W2003337584 @default.
- W3172339486 cites W2013061102 @default.
- W3172339486 cites W2018627383 @default.
- W3172339486 cites W2021623804 @default.
- W3172339486 cites W2026470773 @default.
- W3172339486 cites W2037117298 @default.
- W3172339486 cites W2038136715 @default.
- W3172339486 cites W2043273487 @default.
- W3172339486 cites W2049499004 @default.
- W3172339486 cites W2068492232 @default.
- W3172339486 cites W2069358120 @default.
- W3172339486 cites W2097110832 @default.
- W3172339486 cites W2109606373 @default.
- W3172339486 cites W2121025745 @default.
- W3172339486 cites W2136181038 @default.
- W3172339486 cites W2146205032 @default.
- W3172339486 cites W2150730809 @default.
- W3172339486 cites W2155096269 @default.
- W3172339486 cites W2162421262 @default.
- W3172339486 cites W2166516660 @default.
- W3172339486 cites W2172063876 @default.
- W3172339486 cites W2256170202 @default.
- W3172339486 cites W2272473773 @default.
- W3172339486 cites W2285717070 @default.
- W3172339486 cites W2317582304 @default.
- W3172339486 cites W2510415821 @default.
- W3172339486 cites W2518972658 @default.
- W3172339486 cites W2584842592 @default.
- W3172339486 cites W2621196356 @default.
- W3172339486 cites W2741291720 @default.
- W3172339486 cites W2748898334 @default.
- W3172339486 cites W2750302842 @default.
- W3172339486 cites W2883368201 @default.
- W3172339486 cites W2897276120 @default.
- W3172339486 cites W2897795069 @default.
- W3172339486 cites W2901460839 @default.
- W3172339486 cites W2903512164 @default.
- W3172339486 cites W2946388810 @default.
- W3172339486 cites W2951165859 @default.
- W3172339486 cites W2988632115 @default.
- W3172339486 cites W2994271823 @default.
- W3172339486 cites W3006382827 @default.
- W3172339486 cites W3011346529 @default.
- W3172339486 cites W3046091284 @default.
- W3172339486 cites W3049282503 @default.
- W3172339486 cites W3084551372 @default.
- W3172339486 cites W3092232730 @default.
- W3172339486 cites W3122664765 @default.
- W3172339486 cites W3135702057 @default.
- W3172339486 cites W3138637597 @default.
- W3172339486 cites W61452412 @default.
- W3172339486 doi "https://doi.org/10.3390/rs13112165" @default.
- W3172339486 hasPublicationYear "2021" @default.
- W3172339486 type Work @default.
- W3172339486 sameAs 3172339486 @default.
- W3172339486 citedByCount "9" @default.
- W3172339486 countsByYear W31723394862022 @default.
- W3172339486 countsByYear W31723394862023 @default.
- W3172339486 crossrefType "journal-article" @default.
- W3172339486 hasAuthorship W3172339486A5019004092 @default.
- W3172339486 hasAuthorship W3172339486A5022724601 @default.
- W3172339486 hasAuthorship W3172339486A5029107736 @default.
- W3172339486 hasAuthorship W3172339486A5033418882 @default.
- W3172339486 hasAuthorship W3172339486A5046253787 @default.
- W3172339486 hasAuthorship W3172339486A5063493372 @default.
- W3172339486 hasAuthorship W3172339486A5068252474 @default.
- W3172339486 hasAuthorship W3172339486A5080280424 @default.
- W3172339486 hasAuthorship W3172339486A5085883202 @default.
- W3172339486 hasBestOaLocation W31723394861 @default.
- W3172339486 hasConcept C104317684 @default.
- W3172339486 hasConcept C108597893 @default.
- W3172339486 hasConcept C11413529 @default.
- W3172339486 hasConcept C120665830 @default.
- W3172339486 hasConcept C121332964 @default.
- W3172339486 hasConcept C127413603 @default.
- W3172339486 hasConcept C142724271 @default.
- W3172339486 hasConcept C146978453 @default.
- W3172339486 hasConcept C147176958 @default.