Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172352011> ?p ?o ?g. }
- W3172352011 abstract "Manual brain extraction from magnetic resonance (MR) images is time-consuming and prone to intra- and inter-rater variability. Several automated approaches have been developed to alleviate these constraints, including deep learning pipelines. However, these methods tend to reduce their performance in unseen magnetic resonance imaging (MRI) scanner vendors and different imaging protocols.To present and evaluate for clinical use PARIETAL, a pre-trained deep learning brain extraction method. We compare its reproducibility in a scan/rescan analysis and its robustness among scanners of different manufacturers.Retrospective.Twenty-one subjects (12 women) with age range 22-48 years acquired using three different MRI scanner machines including scan/rescan in each of them.T1-weighted images acquired in a 3-T Siemens with magnetization prepared rapid gradient-echo sequence and two 1.5 T scanners, Philips and GE, with spin-echo and spoiled gradient-recalled (SPGR) sequences, respectively.Analysis of the intracranial cavity volumes obtained for each subject on the three different scanners and the scan/rescan acquisitions.Parametric permutation tests of the differences in volumes to rank and statistically evaluate the performance of PARIETAL compared to state-of-the-art methods.The mean absolute intracranial volume differences obtained by PARIETAL in the scan/rescan analysis were 1.88 mL, 3.91 mL, and 4.71 mL for Siemens, GE, and Philips scanners, respectively. PARIETAL was the best-ranked method on Siemens and GE scanners, while decreasing to Rank 2 on the Philips images. Intracranial differences for the same subject between scanners were 5.46 mL, 27.16 mL, and 30.44 mL for GE/Philips, Siemens/Philips, and Siemens/GE comparison, respectively. The permutation tests revealed that PARIETAL was always in Rank 1, obtaining the most similar volumetric results between scanners.PARIETAL accurately segments the brain and it generalizes to images acquired at different sites without the need of training or fine-tuning it again. PARIETAL is publicly available.2 TECHNICAL EFFICACY STAGE: 2." @default.
- W3172352011 created "2021-06-22" @default.
- W3172352011 creator A5004788191 @default.
- W3172352011 creator A5027168396 @default.
- W3172352011 creator A5060062918 @default.
- W3172352011 creator A5060317108 @default.
- W3172352011 creator A5063275381 @default.
- W3172352011 creator A5064897887 @default.
- W3172352011 creator A5071694277 @default.
- W3172352011 creator A5082890627 @default.
- W3172352011 creator A5085592048 @default.
- W3172352011 date "2021-06-16" @default.
- W3172352011 modified "2023-10-18" @default.
- W3172352011 title "Assessing the Accuracy and Reproducibility of <scp>PARIETAL</scp>: A Deep Learning Brain Extraction Algorithm" @default.
- W3172352011 cites W1812490466 @default.
- W3172352011 cites W1901129140 @default.
- W3172352011 cites W2023933689 @default.
- W3172352011 cites W2038103816 @default.
- W3172352011 cites W2046432781 @default.
- W3172352011 cites W2083099567 @default.
- W3172352011 cites W2085641953 @default.
- W3172352011 cites W2102099319 @default.
- W3172352011 cites W2112711848 @default.
- W3172352011 cites W2131104747 @default.
- W3172352011 cites W2136145485 @default.
- W3172352011 cites W2138197318 @default.
- W3172352011 cites W2145661921 @default.
- W3172352011 cites W2148347694 @default.
- W3172352011 cites W2150534249 @default.
- W3172352011 cites W2151050383 @default.
- W3172352011 cites W2157270343 @default.
- W3172352011 cites W2194775991 @default.
- W3172352011 cites W2203963179 @default.
- W3172352011 cites W2284198383 @default.
- W3172352011 cites W2310992461 @default.
- W3172352011 cites W2342591535 @default.
- W3172352011 cites W2464708700 @default.
- W3172352011 cites W2554933181 @default.
- W3172352011 cites W2621028221 @default.
- W3172352011 cites W2729876886 @default.
- W3172352011 cites W2742774307 @default.
- W3172352011 cites W2962930554 @default.
- W3172352011 cites W2963052998 @default.
- W3172352011 cites W2963076262 @default.
- W3172352011 cites W2964156854 @default.
- W3172352011 cites W2968446587 @default.
- W3172352011 doi "https://doi.org/10.1002/jmri.27776" @default.
- W3172352011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34137113" @default.
- W3172352011 hasPublicationYear "2021" @default.
- W3172352011 type Work @default.
- W3172352011 sameAs 3172352011 @default.
- W3172352011 citedByCount "6" @default.
- W3172352011 countsByYear W31723520112021 @default.
- W3172352011 countsByYear W31723520112023 @default.
- W3172352011 crossrefType "journal-article" @default.
- W3172352011 hasAuthorship W3172352011A5004788191 @default.
- W3172352011 hasAuthorship W3172352011A5027168396 @default.
- W3172352011 hasAuthorship W3172352011A5060062918 @default.
- W3172352011 hasAuthorship W3172352011A5060317108 @default.
- W3172352011 hasAuthorship W3172352011A5063275381 @default.
- W3172352011 hasAuthorship W3172352011A5064897887 @default.
- W3172352011 hasAuthorship W3172352011A5071694277 @default.
- W3172352011 hasAuthorship W3172352011A5082890627 @default.
- W3172352011 hasAuthorship W3172352011A5085592048 @default.
- W3172352011 hasBestOaLocation W31723520112 @default.
- W3172352011 hasConcept C100053769 @default.
- W3172352011 hasConcept C105795698 @default.
- W3172352011 hasConcept C108583219 @default.
- W3172352011 hasConcept C11413529 @default.
- W3172352011 hasConcept C121332964 @default.
- W3172352011 hasConcept C126838900 @default.
- W3172352011 hasConcept C143409427 @default.
- W3172352011 hasConcept C154945302 @default.
- W3172352011 hasConcept C2779751349 @default.
- W3172352011 hasConcept C2989005 @default.
- W3172352011 hasConcept C3019323268 @default.
- W3172352011 hasConcept C33923547 @default.
- W3172352011 hasConcept C41008148 @default.
- W3172352011 hasConcept C62520636 @default.
- W3172352011 hasConcept C71924100 @default.
- W3172352011 hasConcept C9893847 @default.
- W3172352011 hasConceptScore W3172352011C100053769 @default.
- W3172352011 hasConceptScore W3172352011C105795698 @default.
- W3172352011 hasConceptScore W3172352011C108583219 @default.
- W3172352011 hasConceptScore W3172352011C11413529 @default.
- W3172352011 hasConceptScore W3172352011C121332964 @default.
- W3172352011 hasConceptScore W3172352011C126838900 @default.
- W3172352011 hasConceptScore W3172352011C143409427 @default.
- W3172352011 hasConceptScore W3172352011C154945302 @default.
- W3172352011 hasConceptScore W3172352011C2779751349 @default.
- W3172352011 hasConceptScore W3172352011C2989005 @default.
- W3172352011 hasConceptScore W3172352011C3019323268 @default.
- W3172352011 hasConceptScore W3172352011C33923547 @default.
- W3172352011 hasConceptScore W3172352011C41008148 @default.
- W3172352011 hasConceptScore W3172352011C62520636 @default.
- W3172352011 hasConceptScore W3172352011C71924100 @default.
- W3172352011 hasConceptScore W3172352011C9893847 @default.
- W3172352011 hasFunder F4320315062 @default.
- W3172352011 hasLocation W31723520111 @default.
- W3172352011 hasLocation W31723520112 @default.