Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172530956> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3172530956 endingPage "56" @default.
- W3172530956 startingPage "40" @default.
- W3172530956 abstract "When deciding where to build new roads, it would be useful to obtain quickly and reliably an idea of the necessary characteristics of any potential bridges, using limited information and without considerable effort, as there is a considerable amount of information on built bridges in a standardised form, and there are robust algorithms for analysing these data. This study presents a methodology for estimating the likely bridge characteristics using the information available in a bridge database and Bayesian networks. The methodology is demonstrated by estimating the bridge characteristics of 1793 bridge records using nine situational characteristics – for example, the cross-section of the bridge superstructure and number of bridge spans. It is concluded that the methodology is a useful tool when estimating the characteristics of new bridges using only situational information. Compared with naïve-search databases queries, the prediction capability of all networks developed using the proposed methodology showed an estimated accuracy above 86.5%, which is considerably higher than that found when the methodology was not used – that is, 66.5%. Additionally, it is shown that Bayesian networks based on expert experience can obtain results similar to, and in many cases even better than, those of Bayesian networks based solely on learning algorithms." @default.
- W3172530956 created "2021-06-22" @default.
- W3172530956 creator A5015501207 @default.
- W3172530956 creator A5017294558 @default.
- W3172530956 creator A5048552079 @default.
- W3172530956 creator A5054400851 @default.
- W3172530956 date "2022-03-01" @default.
- W3172530956 modified "2023-10-01" @default.
- W3172530956 title "Using Bayesian networks to estimate bridge characteristics in early road designs" @default.
- W3172530956 cites W1571995655 @default.
- W3172530956 cites W1601941283 @default.
- W3172530956 cites W1991342649 @default.
- W3172530956 cites W1999432334 @default.
- W3172530956 cites W2026180204 @default.
- W3172530956 cites W2030474209 @default.
- W3172530956 cites W2042794667 @default.
- W3172530956 cites W2045781200 @default.
- W3172530956 cites W2047387322 @default.
- W3172530956 cites W2055124810 @default.
- W3172530956 cites W2071385458 @default.
- W3172530956 cites W2075145630 @default.
- W3172530956 cites W2079720599 @default.
- W3172530956 cites W2084093765 @default.
- W3172530956 cites W2108256912 @default.
- W3172530956 cites W2120505807 @default.
- W3172530956 cites W2128088446 @default.
- W3172530956 cites W2128344973 @default.
- W3172530956 cites W2128890213 @default.
- W3172530956 cites W2143891888 @default.
- W3172530956 cites W2161205483 @default.
- W3172530956 cites W2165190832 @default.
- W3172530956 cites W2196825067 @default.
- W3172530956 cites W2216314928 @default.
- W3172530956 cites W2287938360 @default.
- W3172530956 cites W2471159340 @default.
- W3172530956 cites W2557329453 @default.
- W3172530956 cites W2767323256 @default.
- W3172530956 cites W2785462283 @default.
- W3172530956 cites W2796105814 @default.
- W3172530956 cites W2891909714 @default.
- W3172530956 cites W2899033550 @default.
- W3172530956 cites W3103169479 @default.
- W3172530956 doi "https://doi.org/10.1680/jinam.20.00016" @default.
- W3172530956 hasPublicationYear "2022" @default.
- W3172530956 type Work @default.
- W3172530956 sameAs 3172530956 @default.
- W3172530956 citedByCount "4" @default.
- W3172530956 countsByYear W31725309562022 @default.
- W3172530956 countsByYear W31725309562023 @default.
- W3172530956 crossrefType "journal-article" @default.
- W3172530956 hasAuthorship W3172530956A5015501207 @default.
- W3172530956 hasAuthorship W3172530956A5017294558 @default.
- W3172530956 hasAuthorship W3172530956A5048552079 @default.
- W3172530956 hasAuthorship W3172530956A5054400851 @default.
- W3172530956 hasBestOaLocation W31725309561 @default.
- W3172530956 hasConcept C100776233 @default.
- W3172530956 hasConcept C107673813 @default.
- W3172530956 hasConcept C119857082 @default.
- W3172530956 hasConcept C124101348 @default.
- W3172530956 hasConcept C126322002 @default.
- W3172530956 hasConcept C154945302 @default.
- W3172530956 hasConcept C33724603 @default.
- W3172530956 hasConcept C41008148 @default.
- W3172530956 hasConcept C71924100 @default.
- W3172530956 hasConceptScore W3172530956C100776233 @default.
- W3172530956 hasConceptScore W3172530956C107673813 @default.
- W3172530956 hasConceptScore W3172530956C119857082 @default.
- W3172530956 hasConceptScore W3172530956C124101348 @default.
- W3172530956 hasConceptScore W3172530956C126322002 @default.
- W3172530956 hasConceptScore W3172530956C154945302 @default.
- W3172530956 hasConceptScore W3172530956C33724603 @default.
- W3172530956 hasConceptScore W3172530956C41008148 @default.
- W3172530956 hasConceptScore W3172530956C71924100 @default.
- W3172530956 hasIssue "1" @default.
- W3172530956 hasLocation W31725309561 @default.
- W3172530956 hasLocation W31725309562 @default.
- W3172530956 hasOpenAccess W3172530956 @default.
- W3172530956 hasPrimaryLocation W31725309561 @default.
- W3172530956 hasRelatedWork W1991361456 @default.
- W3172530956 hasRelatedWork W2961085424 @default.
- W3172530956 hasRelatedWork W3046775127 @default.
- W3172530956 hasRelatedWork W3170094116 @default.
- W3172530956 hasRelatedWork W4285260836 @default.
- W3172530956 hasRelatedWork W4286629047 @default.
- W3172530956 hasRelatedWork W4306321456 @default.
- W3172530956 hasRelatedWork W4306674287 @default.
- W3172530956 hasRelatedWork W4385957992 @default.
- W3172530956 hasRelatedWork W4224009465 @default.
- W3172530956 hasVolume "9" @default.
- W3172530956 isParatext "false" @default.
- W3172530956 isRetracted "false" @default.
- W3172530956 magId "3172530956" @default.
- W3172530956 workType "article" @default.