Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172733829> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3172733829 abstract "Research work carried out in this paper is to compare performance analysis of optimization and artificial intelligence control on current spike reduction by means of magnetization level control in the primary winding on the medium frequency direct current (MFDC) welding transformer for resistance spot welding system (RSWS). Spike reduction in primary current of a welding transformer is a major criterion for uninterrupted operation of spot-welding system. Spike generation in spot welding system is due to the unequal impedance of secondary circuits of transformer and different characteristics of diodes at the load end cause the protection system of welding system to be switched-off. The current control technique is a piecewise linear control technique that is inspired from the DC-DC converter control algorithms to register a novel current spike reduction method in the MFDC spot welding applications. Conventional control systems like PI controller and Hysteresis controller are implemented in the previous research but those controllers were facing a problem like high ripple content, spike reduction in the current signal is not in desired limits, etc. advancement in the control area of spot-welding system has been carried out with artificial intelligence techniques. Here in this paper, the two controllers from two different environment chosen in order to reduce the spike in the primary current of welding transformer. This paper analyses the performance of Artificial Neural Network (ANN) controller and Optimized controller in the view of spike reduction in the current, total harmonic distortion (THD), percentage ripple in welding current, rise time and settling time. Above mentioned controllers are implemented in Matlab/Simulink software environment with 220 kVA welding transformer and results are tabulated" @default.
- W3172733829 created "2021-06-22" @default.
- W3172733829 creator A5010879140 @default.
- W3172733829 creator A5054038218 @default.
- W3172733829 date "2021-05-06" @default.
- W3172733829 modified "2023-09-27" @default.
- W3172733829 title "Artificial Neural Network and Optimized control for Resistance Spot Welding System" @default.
- W3172733829 cites W1978263548 @default.
- W3172733829 cites W2033305744 @default.
- W3172733829 cites W2127572586 @default.
- W3172733829 cites W2133531768 @default.
- W3172733829 cites W2159026035 @default.
- W3172733829 cites W815888704 @default.
- W3172733829 doi "https://doi.org/10.1109/iciccs51141.2021.9432240" @default.
- W3172733829 hasPublicationYear "2021" @default.
- W3172733829 type Work @default.
- W3172733829 sameAs 3172733829 @default.
- W3172733829 citedByCount "0" @default.
- W3172733829 crossrefType "proceedings-article" @default.
- W3172733829 hasAuthorship W3172733829A5010879140 @default.
- W3172733829 hasAuthorship W3172733829A5054038218 @default.
- W3172733829 hasConcept C110209231 @default.
- W3172733829 hasConcept C119599485 @default.
- W3172733829 hasConcept C120114934 @default.
- W3172733829 hasConcept C127413603 @default.
- W3172733829 hasConcept C154945302 @default.
- W3172733829 hasConcept C165801399 @default.
- W3172733829 hasConcept C170760906 @default.
- W3172733829 hasConcept C17500928 @default.
- W3172733829 hasConcept C19474535 @default.
- W3172733829 hasConcept C20480867 @default.
- W3172733829 hasConcept C24326235 @default.
- W3172733829 hasConcept C2775924081 @default.
- W3172733829 hasConcept C2779599953 @default.
- W3172733829 hasConcept C41008148 @default.
- W3172733829 hasConcept C42156128 @default.
- W3172733829 hasConcept C47446073 @default.
- W3172733829 hasConcept C66322947 @default.
- W3172733829 hasConcept C78519656 @default.
- W3172733829 hasConceptScore W3172733829C110209231 @default.
- W3172733829 hasConceptScore W3172733829C119599485 @default.
- W3172733829 hasConceptScore W3172733829C120114934 @default.
- W3172733829 hasConceptScore W3172733829C127413603 @default.
- W3172733829 hasConceptScore W3172733829C154945302 @default.
- W3172733829 hasConceptScore W3172733829C165801399 @default.
- W3172733829 hasConceptScore W3172733829C170760906 @default.
- W3172733829 hasConceptScore W3172733829C17500928 @default.
- W3172733829 hasConceptScore W3172733829C19474535 @default.
- W3172733829 hasConceptScore W3172733829C20480867 @default.
- W3172733829 hasConceptScore W3172733829C24326235 @default.
- W3172733829 hasConceptScore W3172733829C2775924081 @default.
- W3172733829 hasConceptScore W3172733829C2779599953 @default.
- W3172733829 hasConceptScore W3172733829C41008148 @default.
- W3172733829 hasConceptScore W3172733829C42156128 @default.
- W3172733829 hasConceptScore W3172733829C47446073 @default.
- W3172733829 hasConceptScore W3172733829C66322947 @default.
- W3172733829 hasConceptScore W3172733829C78519656 @default.
- W3172733829 hasLocation W31727338291 @default.
- W3172733829 hasOpenAccess W3172733829 @default.
- W3172733829 hasPrimaryLocation W31727338291 @default.
- W3172733829 hasRelatedWork W2033706860 @default.
- W3172733829 hasRelatedWork W2349949728 @default.
- W3172733829 hasRelatedWork W2371316692 @default.
- W3172733829 hasRelatedWork W2372140263 @default.
- W3172733829 hasRelatedWork W2383201995 @default.
- W3172733829 hasRelatedWork W2383246485 @default.
- W3172733829 hasRelatedWork W2881001617 @default.
- W3172733829 hasRelatedWork W2897983346 @default.
- W3172733829 hasRelatedWork W3098535290 @default.
- W3172733829 hasRelatedWork W3156231030 @default.
- W3172733829 isParatext "false" @default.
- W3172733829 isRetracted "false" @default.
- W3172733829 magId "3172733829" @default.
- W3172733829 workType "article" @default.