Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172743879> ?p ?o ?g. }
- W3172743879 endingPage "11" @default.
- W3172743879 startingPage "1" @default.
- W3172743879 abstract "Logistic regression has been widely used in artificial intelligence and machine learning due to its deep theoretical basis and good practical performance. Its training process aims to solve a large-scale optimization problem characterized by a likelihood function, where the gradient descent approach is the most commonly used. However, when the data size is large, it is very time-consuming because it computes the gradient using all the training data in every iteration. Though this difficulty can be solved by random sampling, the appropriate sampled examples size is difficult to be predetermined and the obtained could be not robust. To overcome this deficiency, we propose a novel algorithm for fast training logistic regression via adaptive sampling. The proposed method decomposes the problem of gradient estimation into several subproblems according to its dimension; then, each subproblem is solved independently by adaptive sampling. Each element of the gradient estimation is obtained by successively sampling a fixed volume training example multiple times until it satisfies its stopping criteria. The final estimation is combined with the results of all the subproblems. It is proved that the obtained gradient estimation is a robust estimation, and it could keep the objective function value decreasing in the iterative calculation. Compared with the representative algorithms using random sampling, the experimental results show that this algorithm obtains comparable classification performance with much less training time." @default.
- W3172743879 created "2021-06-22" @default.
- W3172743879 creator A5042828923 @default.
- W3172743879 creator A5046481501 @default.
- W3172743879 creator A5069056378 @default.
- W3172743879 creator A5069749771 @default.
- W3172743879 date "2021-05-29" @default.
- W3172743879 modified "2023-10-17" @default.
- W3172743879 title "Fast Training Logistic Regression via Adaptive Sampling" @default.
- W3172743879 cites W1980287119 @default.
- W3172743879 cites W1994326354 @default.
- W3172743879 cites W1994616650 @default.
- W3172743879 cites W2049469158 @default.
- W3172743879 cites W2060777387 @default.
- W3172743879 cites W2061570747 @default.
- W3172743879 cites W2109189215 @default.
- W3172743879 cites W2134086158 @default.
- W3172743879 cites W2153635508 @default.
- W3172743879 cites W2169713291 @default.
- W3172743879 cites W2792328488 @default.
- W3172743879 cites W2896684650 @default.
- W3172743879 cites W2907675382 @default.
- W3172743879 cites W2913997948 @default.
- W3172743879 cites W2921093430 @default.
- W3172743879 cites W2954707123 @default.
- W3172743879 cites W2966632508 @default.
- W3172743879 cites W3001998614 @default.
- W3172743879 cites W3011484826 @default.
- W3172743879 cites W3016935098 @default.
- W3172743879 cites W3033715510 @default.
- W3172743879 cites W3086548118 @default.
- W3172743879 cites W3098603383 @default.
- W3172743879 cites W3137665052 @default.
- W3172743879 cites W4238893454 @default.
- W3172743879 cites W4244921287 @default.
- W3172743879 cites W4246040193 @default.
- W3172743879 cites W4252684946 @default.
- W3172743879 doi "https://doi.org/10.1155/2021/9991859" @default.
- W3172743879 hasPublicationYear "2021" @default.
- W3172743879 type Work @default.
- W3172743879 sameAs 3172743879 @default.
- W3172743879 citedByCount "1" @default.
- W3172743879 countsByYear W31727438792021 @default.
- W3172743879 crossrefType "journal-article" @default.
- W3172743879 hasAuthorship W3172743879A5042828923 @default.
- W3172743879 hasAuthorship W3172743879A5046481501 @default.
- W3172743879 hasAuthorship W3172743879A5069056378 @default.
- W3172743879 hasAuthorship W3172743879A5069749771 @default.
- W3172743879 hasBestOaLocation W31727438791 @default.
- W3172743879 hasConcept C105795698 @default.
- W3172743879 hasConcept C106131492 @default.
- W3172743879 hasConcept C11413529 @default.
- W3172743879 hasConcept C119857082 @default.
- W3172743879 hasConcept C126255220 @default.
- W3172743879 hasConcept C14036430 @default.
- W3172743879 hasConcept C140779682 @default.
- W3172743879 hasConcept C151956035 @default.
- W3172743879 hasConcept C153258448 @default.
- W3172743879 hasConcept C154945302 @default.
- W3172743879 hasConcept C19499675 @default.
- W3172743879 hasConcept C202444582 @default.
- W3172743879 hasConcept C206688291 @default.
- W3172743879 hasConcept C2781395549 @default.
- W3172743879 hasConcept C31972630 @default.
- W3172743879 hasConcept C33676613 @default.
- W3172743879 hasConcept C33923547 @default.
- W3172743879 hasConcept C41008148 @default.
- W3172743879 hasConcept C50644808 @default.
- W3172743879 hasConcept C78458016 @default.
- W3172743879 hasConcept C83546350 @default.
- W3172743879 hasConcept C86803240 @default.
- W3172743879 hasConceptScore W3172743879C105795698 @default.
- W3172743879 hasConceptScore W3172743879C106131492 @default.
- W3172743879 hasConceptScore W3172743879C11413529 @default.
- W3172743879 hasConceptScore W3172743879C119857082 @default.
- W3172743879 hasConceptScore W3172743879C126255220 @default.
- W3172743879 hasConceptScore W3172743879C14036430 @default.
- W3172743879 hasConceptScore W3172743879C140779682 @default.
- W3172743879 hasConceptScore W3172743879C151956035 @default.
- W3172743879 hasConceptScore W3172743879C153258448 @default.
- W3172743879 hasConceptScore W3172743879C154945302 @default.
- W3172743879 hasConceptScore W3172743879C19499675 @default.
- W3172743879 hasConceptScore W3172743879C202444582 @default.
- W3172743879 hasConceptScore W3172743879C206688291 @default.
- W3172743879 hasConceptScore W3172743879C2781395549 @default.
- W3172743879 hasConceptScore W3172743879C31972630 @default.
- W3172743879 hasConceptScore W3172743879C33676613 @default.
- W3172743879 hasConceptScore W3172743879C33923547 @default.
- W3172743879 hasConceptScore W3172743879C41008148 @default.
- W3172743879 hasConceptScore W3172743879C50644808 @default.
- W3172743879 hasConceptScore W3172743879C78458016 @default.
- W3172743879 hasConceptScore W3172743879C83546350 @default.
- W3172743879 hasConceptScore W3172743879C86803240 @default.
- W3172743879 hasFunder F4320324174 @default.
- W3172743879 hasLocation W31727438791 @default.
- W3172743879 hasOpenAccess W3172743879 @default.
- W3172743879 hasPrimaryLocation W31727438791 @default.
- W3172743879 hasRelatedWork W1407330 @default.