Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172786646> ?p ?o ?g. }
- W3172786646 endingPage "105" @default.
- W3172786646 startingPage "100" @default.
- W3172786646 abstract "Background and aims We developed a deep learning (DL) model for automated atherosclerotic plaque categorization using optical frequency domain imaging (OFDI) and performed quantitative and visual evaluations. Methods A total of 1103 histological cross-sections from 45 autopsy hearts were examined to compare the ex vivo OFDI scans. The images were segmented and annotated considering four histological categories: pathological intimal thickening (PIT), fibrous cap atheroma (FA), fibrocalcific plaque (FC), and healed erosion/rupture (HER). The DL model was developed based on pyramid scene parsing network (PSPNet). Given an input image, a convolutional neural network (ResNet50) was used as an encoder to generate feature maps of the last convolutional layer. Results For the quantitative evaluation, the mean F-score and IoU values, which are used to evaluate how close the predicted results are to the ground truth, were used. The validation and test dataset had F-score and IoU values of 0.63, 0.49, and 0.66, 0.52, respectively. For the section-level diagnostic accuracy, the areas under the receiver-operating characteristic curve produced by the DL model for FC, PIT, FA, and HER were 0.91, 0.85, 0.86, and 0.86, respectively, and were comparable to those of an expert observer. Conclusions DL semantic segmentation of coronary plaques in OFDI images was used as a tool to automatically categorize atherosclerotic plaques using histological findings as the gold standard. The proposed method can support interventional cardiologists in understanding histological properties of plaques." @default.
- W3172786646 created "2021-06-22" @default.
- W3172786646 creator A5002050470 @default.
- W3172786646 creator A5002085584 @default.
- W3172786646 creator A5008634968 @default.
- W3172786646 creator A5018701505 @default.
- W3172786646 creator A5025704398 @default.
- W3172786646 creator A5028737176 @default.
- W3172786646 creator A5029030083 @default.
- W3172786646 creator A5029215171 @default.
- W3172786646 creator A5041789617 @default.
- W3172786646 creator A5061945229 @default.
- W3172786646 creator A5062487802 @default.
- W3172786646 creator A5070768021 @default.
- W3172786646 creator A5091034509 @default.
- W3172786646 date "2021-07-01" @default.
- W3172786646 modified "2023-10-16" @default.
- W3172786646 title "Automated classification of coronary atherosclerotic plaque in optical frequency domain imaging based on deep learning" @default.
- W3172786646 cites W1227880109 @default.
- W3172786646 cites W125438606 @default.
- W3172786646 cites W190639093 @default.
- W3172786646 cites W1956305767 @default.
- W3172786646 cites W2027236468 @default.
- W3172786646 cites W2088283572 @default.
- W3172786646 cites W2134254671 @default.
- W3172786646 cites W2155102383 @default.
- W3172786646 cites W2157080081 @default.
- W3172786646 cites W2161682643 @default.
- W3172786646 cites W2180009533 @default.
- W3172786646 cites W2264045234 @default.
- W3172786646 cites W2581493794 @default.
- W3172786646 cites W2806930130 @default.
- W3172786646 cites W2896287590 @default.
- W3172786646 cites W2901903036 @default.
- W3172786646 cites W2908738937 @default.
- W3172786646 cites W2919115771 @default.
- W3172786646 cites W2928542791 @default.
- W3172786646 cites W2946050503 @default.
- W3172786646 cites W2958500756 @default.
- W3172786646 cites W2979464239 @default.
- W3172786646 cites W2992841384 @default.
- W3172786646 cites W3098809754 @default.
- W3172786646 cites W3109688688 @default.
- W3172786646 cites W34521524 @default.
- W3172786646 doi "https://doi.org/10.1016/j.atherosclerosis.2021.06.003" @default.
- W3172786646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34126504" @default.
- W3172786646 hasPublicationYear "2021" @default.
- W3172786646 type Work @default.
- W3172786646 sameAs 3172786646 @default.
- W3172786646 citedByCount "6" @default.
- W3172786646 countsByYear W31727866462022 @default.
- W3172786646 countsByYear W31727866462023 @default.
- W3172786646 crossrefType "journal-article" @default.
- W3172786646 hasAuthorship W3172786646A5002050470 @default.
- W3172786646 hasAuthorship W3172786646A5002085584 @default.
- W3172786646 hasAuthorship W3172786646A5008634968 @default.
- W3172786646 hasAuthorship W3172786646A5018701505 @default.
- W3172786646 hasAuthorship W3172786646A5025704398 @default.
- W3172786646 hasAuthorship W3172786646A5028737176 @default.
- W3172786646 hasAuthorship W3172786646A5029030083 @default.
- W3172786646 hasAuthorship W3172786646A5029215171 @default.
- W3172786646 hasAuthorship W3172786646A5041789617 @default.
- W3172786646 hasAuthorship W3172786646A5061945229 @default.
- W3172786646 hasAuthorship W3172786646A5062487802 @default.
- W3172786646 hasAuthorship W3172786646A5070768021 @default.
- W3172786646 hasAuthorship W3172786646A5091034509 @default.
- W3172786646 hasConcept C108583219 @default.
- W3172786646 hasConcept C126322002 @default.
- W3172786646 hasConcept C126838900 @default.
- W3172786646 hasConcept C142575187 @default.
- W3172786646 hasConcept C142724271 @default.
- W3172786646 hasConcept C146849305 @default.
- W3172786646 hasConcept C153180895 @default.
- W3172786646 hasConcept C154945302 @default.
- W3172786646 hasConcept C2524010 @default.
- W3172786646 hasConcept C33923547 @default.
- W3172786646 hasConcept C40993552 @default.
- W3172786646 hasConcept C41008148 @default.
- W3172786646 hasConcept C58471807 @default.
- W3172786646 hasConcept C71924100 @default.
- W3172786646 hasConcept C81363708 @default.
- W3172786646 hasConcept C89600930 @default.
- W3172786646 hasConcept C94124525 @default.
- W3172786646 hasConceptScore W3172786646C108583219 @default.
- W3172786646 hasConceptScore W3172786646C126322002 @default.
- W3172786646 hasConceptScore W3172786646C126838900 @default.
- W3172786646 hasConceptScore W3172786646C142575187 @default.
- W3172786646 hasConceptScore W3172786646C142724271 @default.
- W3172786646 hasConceptScore W3172786646C146849305 @default.
- W3172786646 hasConceptScore W3172786646C153180895 @default.
- W3172786646 hasConceptScore W3172786646C154945302 @default.
- W3172786646 hasConceptScore W3172786646C2524010 @default.
- W3172786646 hasConceptScore W3172786646C33923547 @default.
- W3172786646 hasConceptScore W3172786646C40993552 @default.
- W3172786646 hasConceptScore W3172786646C41008148 @default.
- W3172786646 hasConceptScore W3172786646C58471807 @default.
- W3172786646 hasConceptScore W3172786646C71924100 @default.
- W3172786646 hasConceptScore W3172786646C81363708 @default.