Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172803077> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3172803077 endingPage "115" @default.
- W3172803077 startingPage "109" @default.
- W3172803077 abstract "Vehicular networks are an indispensable component of future autonomous and intelligent transport systems. Today, many vehicular networking applications are emerging, and therefore, efficient data computation, storage, and retrieval solutions are needed. Vehicular edge computing (VEC) is a promising technique that uses roadside units to act as edge servers for caching and task offloading purposes. We present a task-based architecture of content caching in VEC, where three major tasks are identified, namely, content popularity prediction, content placement in the cache, and content retrieval from the cache. We present an overview of how artificial intelligence techniques such as regression and deep Q-learning can improve the efficiency of these tasks. We also highlight related future research opportunities in areas such as collaborative data sharing for improved caching, efficient sub-channel allocation for content retrieval in C-V2X, and secure caching." @default.
- W3172803077 created "2021-06-22" @default.
- W3172803077 creator A5002810652 @default.
- W3172803077 creator A5054250222 @default.
- W3172803077 date "2021-05-01" @default.
- W3172803077 modified "2023-10-11" @default.
- W3172803077 title "AI-Empowered Content Caching in Vehicular Edge Computing: Opportunities and Challenges" @default.
- W3172803077 cites W2736175869 @default.
- W3172803077 cites W2889540440 @default.
- W3172803077 cites W2891286892 @default.
- W3172803077 cites W2900490252 @default.
- W3172803077 cites W2902215693 @default.
- W3172803077 cites W2916236867 @default.
- W3172803077 cites W2926170212 @default.
- W3172803077 cites W2955535572 @default.
- W3172803077 cites W2958918608 @default.
- W3172803077 cites W2962804345 @default.
- W3172803077 cites W2990530686 @default.
- W3172803077 cites W2996766934 @default.
- W3172803077 cites W3021462936 @default.
- W3172803077 cites W3084119411 @default.
- W3172803077 cites W3088416892 @default.
- W3172803077 doi "https://doi.org/10.1109/mnet.011.2000561" @default.
- W3172803077 hasPublicationYear "2021" @default.
- W3172803077 type Work @default.
- W3172803077 sameAs 3172803077 @default.
- W3172803077 citedByCount "27" @default.
- W3172803077 countsByYear W31728030772021 @default.
- W3172803077 countsByYear W31728030772022 @default.
- W3172803077 countsByYear W31728030772023 @default.
- W3172803077 crossrefType "journal-article" @default.
- W3172803077 hasAuthorship W3172803077A5002810652 @default.
- W3172803077 hasAuthorship W3172803077A5054250222 @default.
- W3172803077 hasConcept C111919701 @default.
- W3172803077 hasConcept C115537543 @default.
- W3172803077 hasConcept C120314980 @default.
- W3172803077 hasConcept C154945302 @default.
- W3172803077 hasConcept C162307627 @default.
- W3172803077 hasConcept C162324750 @default.
- W3172803077 hasConcept C187736073 @default.
- W3172803077 hasConcept C192448918 @default.
- W3172803077 hasConcept C2778456923 @default.
- W3172803077 hasConcept C2780451532 @default.
- W3172803077 hasConcept C31258907 @default.
- W3172803077 hasConcept C41008148 @default.
- W3172803077 hasConcept C551230270 @default.
- W3172803077 hasConcept C555944384 @default.
- W3172803077 hasConcept C77088390 @default.
- W3172803077 hasConcept C93996380 @default.
- W3172803077 hasConcept C94523657 @default.
- W3172803077 hasConceptScore W3172803077C111919701 @default.
- W3172803077 hasConceptScore W3172803077C115537543 @default.
- W3172803077 hasConceptScore W3172803077C120314980 @default.
- W3172803077 hasConceptScore W3172803077C154945302 @default.
- W3172803077 hasConceptScore W3172803077C162307627 @default.
- W3172803077 hasConceptScore W3172803077C162324750 @default.
- W3172803077 hasConceptScore W3172803077C187736073 @default.
- W3172803077 hasConceptScore W3172803077C192448918 @default.
- W3172803077 hasConceptScore W3172803077C2778456923 @default.
- W3172803077 hasConceptScore W3172803077C2780451532 @default.
- W3172803077 hasConceptScore W3172803077C31258907 @default.
- W3172803077 hasConceptScore W3172803077C41008148 @default.
- W3172803077 hasConceptScore W3172803077C551230270 @default.
- W3172803077 hasConceptScore W3172803077C555944384 @default.
- W3172803077 hasConceptScore W3172803077C77088390 @default.
- W3172803077 hasConceptScore W3172803077C93996380 @default.
- W3172803077 hasConceptScore W3172803077C94523657 @default.
- W3172803077 hasIssue "3" @default.
- W3172803077 hasLocation W31728030771 @default.
- W3172803077 hasOpenAccess W3172803077 @default.
- W3172803077 hasPrimaryLocation W31728030771 @default.
- W3172803077 hasRelatedWork W1583717361 @default.
- W3172803077 hasRelatedWork W1751890932 @default.
- W3172803077 hasRelatedWork W2380898862 @default.
- W3172803077 hasRelatedWork W2945616868 @default.
- W3172803077 hasRelatedWork W2989221764 @default.
- W3172803077 hasRelatedWork W3172803077 @default.
- W3172803077 hasRelatedWork W4200004489 @default.
- W3172803077 hasRelatedWork W4252829396 @default.
- W3172803077 hasRelatedWork W4313145167 @default.
- W3172803077 hasRelatedWork W4376106090 @default.
- W3172803077 hasVolume "35" @default.
- W3172803077 isParatext "false" @default.
- W3172803077 isRetracted "false" @default.
- W3172803077 magId "3172803077" @default.
- W3172803077 workType "article" @default.