Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172921504> ?p ?o ?g. }
- W3172921504 endingPage "10" @default.
- W3172921504 startingPage "1" @default.
- W3172921504 abstract "Chronic kidney disease (CKD) is among the top 20 causes of death worldwide and affects approximately 10% of the world adult population. CKD is a disorder that disrupts normal kidney function. Due to the increasing number of people with CKD, effective prediction measures for the early diagnosis of CKD are required. The novelty of this study lies in developing the diagnosis system to detect chronic kidney diseases. This study assists experts in exploring preventive measures for CKD through early diagnosis using machine learning techniques. This study focused on evaluating a dataset collected from 400 patients containing 24 features. The mean and mode statistical analysis methods were used to replace the missing numerical and the nominal values. To choose the most important features, Recursive Feature Elimination (RFE) was applied. Four classification algorithms applied in this study were support vector machine (SVM), k-nearest neighbors (KNN), decision tree, and random forest. All the classification algorithms achieved promising performance. The random forest algorithm outperformed all other applied algorithms, reaching an accuracy, precision, recall, and F1-score of 100% for all measures. CKD is a serious life-threatening disease, with high rates of morbidity and mortality. Therefore, artificial intelligence techniques are of great importance in the early detection of CKD. These techniques are supportive of experts and doctors in early diagnosis to avoid developing kidney failure." @default.
- W3172921504 created "2021-06-22" @default.
- W3172921504 creator A5001028437 @default.
- W3172921504 creator A5016310275 @default.
- W3172921504 creator A5026937315 @default.
- W3172921504 creator A5033486904 @default.
- W3172921504 creator A5045768252 @default.
- W3172921504 creator A5052760665 @default.
- W3172921504 creator A5053776644 @default.
- W3172921504 creator A5064022042 @default.
- W3172921504 creator A5079932319 @default.
- W3172921504 creator A5085168837 @default.
- W3172921504 date "2021-06-09" @default.
- W3172921504 modified "2023-10-14" @default.
- W3172921504 title "Diagnosis of Chronic Kidney Disease Using Effective Classification Algorithms and Recursive Feature Elimination Techniques" @default.
- W3172921504 cites W1980903690 @default.
- W3172921504 cites W2108728387 @default.
- W3172921504 cites W2464795325 @default.
- W3172921504 cites W2791222159 @default.
- W3172921504 cites W2804586924 @default.
- W3172921504 cites W2804880211 @default.
- W3172921504 cites W2887025900 @default.
- W3172921504 cites W2900940968 @default.
- W3172921504 cites W2903675407 @default.
- W3172921504 cites W2933013505 @default.
- W3172921504 cites W2940010972 @default.
- W3172921504 cites W2940596626 @default.
- W3172921504 cites W2948149587 @default.
- W3172921504 cites W2955086442 @default.
- W3172921504 cites W2982215737 @default.
- W3172921504 cites W3011408237 @default.
- W3172921504 cites W3036657808 @default.
- W3172921504 cites W3122059051 @default.
- W3172921504 cites W3125584267 @default.
- W3172921504 cites W3161833042 @default.
- W3172921504 doi "https://doi.org/10.1155/2021/1004767" @default.
- W3172921504 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8208843" @default.
- W3172921504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34211680" @default.
- W3172921504 hasPublicationYear "2021" @default.
- W3172921504 type Work @default.
- W3172921504 sameAs 3172921504 @default.
- W3172921504 citedByCount "75" @default.
- W3172921504 countsByYear W31729215042021 @default.
- W3172921504 countsByYear W31729215042022 @default.
- W3172921504 countsByYear W31729215042023 @default.
- W3172921504 crossrefType "journal-article" @default.
- W3172921504 hasAuthorship W3172921504A5001028437 @default.
- W3172921504 hasAuthorship W3172921504A5016310275 @default.
- W3172921504 hasAuthorship W3172921504A5026937315 @default.
- W3172921504 hasAuthorship W3172921504A5033486904 @default.
- W3172921504 hasAuthorship W3172921504A5045768252 @default.
- W3172921504 hasAuthorship W3172921504A5052760665 @default.
- W3172921504 hasAuthorship W3172921504A5053776644 @default.
- W3172921504 hasAuthorship W3172921504A5064022042 @default.
- W3172921504 hasAuthorship W3172921504A5079932319 @default.
- W3172921504 hasAuthorship W3172921504A5085168837 @default.
- W3172921504 hasBestOaLocation W31729215041 @default.
- W3172921504 hasConcept C110083411 @default.
- W3172921504 hasConcept C11413529 @default.
- W3172921504 hasConcept C119857082 @default.
- W3172921504 hasConcept C12267149 @default.
- W3172921504 hasConcept C124101348 @default.
- W3172921504 hasConcept C126322002 @default.
- W3172921504 hasConcept C138885662 @default.
- W3172921504 hasConcept C142724271 @default.
- W3172921504 hasConcept C154945302 @default.
- W3172921504 hasConcept C169258074 @default.
- W3172921504 hasConcept C177713679 @default.
- W3172921504 hasConcept C2776401178 @default.
- W3172921504 hasConcept C2778653478 @default.
- W3172921504 hasConcept C2779134260 @default.
- W3172921504 hasConcept C2908647359 @default.
- W3172921504 hasConcept C41008148 @default.
- W3172921504 hasConcept C41895202 @default.
- W3172921504 hasConcept C71924100 @default.
- W3172921504 hasConcept C84525736 @default.
- W3172921504 hasConcept C99454951 @default.
- W3172921504 hasConceptScore W3172921504C110083411 @default.
- W3172921504 hasConceptScore W3172921504C11413529 @default.
- W3172921504 hasConceptScore W3172921504C119857082 @default.
- W3172921504 hasConceptScore W3172921504C12267149 @default.
- W3172921504 hasConceptScore W3172921504C124101348 @default.
- W3172921504 hasConceptScore W3172921504C126322002 @default.
- W3172921504 hasConceptScore W3172921504C138885662 @default.
- W3172921504 hasConceptScore W3172921504C142724271 @default.
- W3172921504 hasConceptScore W3172921504C154945302 @default.
- W3172921504 hasConceptScore W3172921504C169258074 @default.
- W3172921504 hasConceptScore W3172921504C177713679 @default.
- W3172921504 hasConceptScore W3172921504C2776401178 @default.
- W3172921504 hasConceptScore W3172921504C2778653478 @default.
- W3172921504 hasConceptScore W3172921504C2779134260 @default.
- W3172921504 hasConceptScore W3172921504C2908647359 @default.
- W3172921504 hasConceptScore W3172921504C41008148 @default.
- W3172921504 hasConceptScore W3172921504C41895202 @default.
- W3172921504 hasConceptScore W3172921504C71924100 @default.
- W3172921504 hasConceptScore W3172921504C84525736 @default.
- W3172921504 hasConceptScore W3172921504C99454951 @default.
- W3172921504 hasLocation W31729215041 @default.