Matches in SemOpenAlex for { <https://semopenalex.org/work/W3172928805> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3172928805 endingPage "264" @default.
- W3172928805 startingPage "251" @default.
- W3172928805 abstract "Machine learning components such as deep neural networks are used extensively in Cyber-Physical Systems (CPS). However, such components may introduce new types of hazards that can have disastrous consequences and need to be addressed for engineering trustworthy systems. Although deep neural networks offer advanced capabilities, they must be complemented by engineering methods and practices that allow effective integration in CPS. In this paper, we proposed an approach for assurance monitoring of learning-enabled CPS based on the conformal prediction framework. In order to allow real-time assurance monitoring, the approach employs distance learning to transform high-dimensional inputs into lower size embedding representations. By leveraging conformal prediction, the approach provides well-calibrated confidence and ensures a bounded small error rate while limiting the number of inputs for which an accurate prediction cannot be made. We demonstrate the approach using three data sets of mobile robot following a wall, speaker recognition, and traffic sign recognition. The experimental results demonstrate that the error rates are well-calibrated while the number of alarms is very small. Further, the method is computationally efficient and allows real-time assurance monitoring of CPS." @default.
- W3172928805 created "2021-06-22" @default.
- W3172928805 creator A5023397404 @default.
- W3172928805 creator A5028618852 @default.
- W3172928805 date "2021-05-01" @default.
- W3172928805 modified "2023-09-26" @default.
- W3172928805 title "Assurance monitoring of learning-enabled cyber-physical systems using inductive conformal prediction based on distance learning" @default.
- W3172928805 cites W1565315670 @default.
- W3172928805 cites W1594344279 @default.
- W3172928805 cites W1968391698 @default.
- W3172928805 cites W1987971958 @default.
- W3172928805 cites W2010546252 @default.
- W3172928805 cites W2012942264 @default.
- W3172928805 cites W2018077356 @default.
- W3172928805 cites W2034323583 @default.
- W3172928805 cites W2067713319 @default.
- W3172928805 cites W2070847992 @default.
- W3172928805 cites W2072128103 @default.
- W3172928805 cites W2122095984 @default.
- W3172928805 cites W2124537004 @default.
- W3172928805 cites W2137556846 @default.
- W3172928805 cites W2143059037 @default.
- W3172928805 cites W2162379628 @default.
- W3172928805 cites W2163517193 @default.
- W3172928805 cites W2165558283 @default.
- W3172928805 cites W2525172929 @default.
- W3172928805 cites W2607603241 @default.
- W3172928805 cites W2735610538 @default.
- W3172928805 cites W2769059631 @default.
- W3172928805 cites W2963775347 @default.
- W3172928805 cites W3024272706 @default.
- W3172928805 cites W3116962725 @default.
- W3172928805 cites W3202637083 @default.
- W3172928805 cites W4252713891 @default.
- W3172928805 doi "https://doi.org/10.1017/s089006042100010x" @default.
- W3172928805 hasPublicationYear "2021" @default.
- W3172928805 type Work @default.
- W3172928805 sameAs 3172928805 @default.
- W3172928805 citedByCount "4" @default.
- W3172928805 countsByYear W31729288052022 @default.
- W3172928805 countsByYear W31729288052023 @default.
- W3172928805 crossrefType "journal-article" @default.
- W3172928805 hasAuthorship W3172928805A5023397404 @default.
- W3172928805 hasAuthorship W3172928805A5028618852 @default.
- W3172928805 hasBestOaLocation W31729288051 @default.
- W3172928805 hasConcept C108583219 @default.
- W3172928805 hasConcept C111919701 @default.
- W3172928805 hasConcept C119857082 @default.
- W3172928805 hasConcept C134306372 @default.
- W3172928805 hasConcept C154945302 @default.
- W3172928805 hasConcept C179768478 @default.
- W3172928805 hasConcept C33923547 @default.
- W3172928805 hasConcept C34388435 @default.
- W3172928805 hasConcept C41008148 @default.
- W3172928805 hasConcept C41608201 @default.
- W3172928805 hasConcept C50644808 @default.
- W3172928805 hasConceptScore W3172928805C108583219 @default.
- W3172928805 hasConceptScore W3172928805C111919701 @default.
- W3172928805 hasConceptScore W3172928805C119857082 @default.
- W3172928805 hasConceptScore W3172928805C134306372 @default.
- W3172928805 hasConceptScore W3172928805C154945302 @default.
- W3172928805 hasConceptScore W3172928805C179768478 @default.
- W3172928805 hasConceptScore W3172928805C33923547 @default.
- W3172928805 hasConceptScore W3172928805C34388435 @default.
- W3172928805 hasConceptScore W3172928805C41008148 @default.
- W3172928805 hasConceptScore W3172928805C41608201 @default.
- W3172928805 hasConceptScore W3172928805C50644808 @default.
- W3172928805 hasIssue "2" @default.
- W3172928805 hasLocation W31729288051 @default.
- W3172928805 hasLocation W31729288052 @default.
- W3172928805 hasLocation W31729288053 @default.
- W3172928805 hasOpenAccess W3172928805 @default.
- W3172928805 hasPrimaryLocation W31729288051 @default.
- W3172928805 hasRelatedWork W2795261237 @default.
- W3172928805 hasRelatedWork W3014300295 @default.
- W3172928805 hasRelatedWork W3164822677 @default.
- W3172928805 hasRelatedWork W4223943233 @default.
- W3172928805 hasRelatedWork W4225161397 @default.
- W3172928805 hasRelatedWork W4312200629 @default.
- W3172928805 hasRelatedWork W4360585206 @default.
- W3172928805 hasRelatedWork W4364306694 @default.
- W3172928805 hasRelatedWork W4380075502 @default.
- W3172928805 hasRelatedWork W4380086463 @default.
- W3172928805 hasVolume "35" @default.
- W3172928805 isParatext "false" @default.
- W3172928805 isRetracted "false" @default.
- W3172928805 magId "3172928805" @default.
- W3172928805 workType "article" @default.