Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173092261> ?p ?o ?g. }
- W3173092261 endingPage "104531" @default.
- W3173092261 startingPage "104531" @default.
- W3173092261 abstract "This study aimed to implement and evaluate machine learning based-models to predict COVID-19' diagnosis and disease severity.COVID-19 test samples (positive or negative results) from patients who attended a single hospital were evaluated. Patients diagnosed with COVID-19 were categorised according to the severity of the disease. Data were submitted to exploratory analysis (principal component analysis, PCA) to detect outlier samples, recognise patterns, and identify important variables. Based on patients' laboratory tests results, machine learning models were implemented to predict disease positivity and severity. Artificial neural networks (ANN), decision trees (DT), partial least squares discriminant analysis (PLS-DA), and K nearest neighbour algorithm (KNN) models were used. The four models were validated based on the accuracy (area under the ROC curve).The first subset of data had 5,643 patient samples (5,086 negatives and 557 positives for COVID-19). The second subset included 557 COVID-19 positive patients. The ANN, DT, PLS-DA, and KNN models allowed the classification of negative and positive samples with >84% accuracy. It was also possible to classify patients with severe and non-severe disease with an accuracy >86%. The following were associated with the prediction of COVID-19 diagnosis and severity: hyperferritinaemia, hypocalcaemia, pulmonary hypoxia, hypoxemia, metabolic and respiratory acidosis, low urinary pH, and high levels of lactate dehydrogenase.Our analysis shows that all the models could assist in the diagnosis and prediction of COVID-19 severity." @default.
- W3173092261 created "2021-06-22" @default.
- W3173092261 creator A5011789018 @default.
- W3173092261 creator A5019231404 @default.
- W3173092261 creator A5055574658 @default.
- W3173092261 creator A5067107891 @default.
- W3173092261 creator A5068299686 @default.
- W3173092261 creator A5068375645 @default.
- W3173092261 creator A5087684110 @default.
- W3173092261 creator A5088873745 @default.
- W3173092261 date "2021-07-01" @default.
- W3173092261 modified "2023-09-24" @default.
- W3173092261 title "Diagnosis and prediction of COVID-19 severity: can biochemical tests and machine learning be used as prognostic indicators?" @default.
- W3173092261 cites W1521111826 @default.
- W3173092261 cites W1870257566 @default.
- W3173092261 cites W1884368288 @default.
- W3173092261 cites W1970458547 @default.
- W3173092261 cites W1971605784 @default.
- W3173092261 cites W1974365779 @default.
- W3173092261 cites W1982359636 @default.
- W3173092261 cites W1982976659 @default.
- W3173092261 cites W1984328389 @default.
- W3173092261 cites W2006434809 @default.
- W3173092261 cites W2017422910 @default.
- W3173092261 cites W2033889277 @default.
- W3173092261 cites W2034362009 @default.
- W3173092261 cites W2038261538 @default.
- W3173092261 cites W2047223713 @default.
- W3173092261 cites W2047592579 @default.
- W3173092261 cites W2060424853 @default.
- W3173092261 cites W2063104954 @default.
- W3173092261 cites W2092160148 @default.
- W3173092261 cites W2103088789 @default.
- W3173092261 cites W2109553965 @default.
- W3173092261 cites W2110962130 @default.
- W3173092261 cites W2121193330 @default.
- W3173092261 cites W2328429867 @default.
- W3173092261 cites W2402077551 @default.
- W3173092261 cites W2414171829 @default.
- W3173092261 cites W2601331348 @default.
- W3173092261 cites W2724833070 @default.
- W3173092261 cites W2798105113 @default.
- W3173092261 cites W2884430236 @default.
- W3173092261 cites W2884443195 @default.
- W3173092261 cites W2941089296 @default.
- W3173092261 cites W2953228914 @default.
- W3173092261 cites W2971460407 @default.
- W3173092261 cites W2997578645 @default.
- W3173092261 cites W3002108456 @default.
- W3173092261 cites W3011871622 @default.
- W3173092261 cites W3012421327 @default.
- W3173092261 cites W3012690896 @default.
- W3173092261 cites W3016689661 @default.
- W3173092261 cites W3021302768 @default.
- W3173092261 cites W3023666587 @default.
- W3173092261 cites W3024297504 @default.
- W3173092261 cites W3024853795 @default.
- W3173092261 cites W3031456278 @default.
- W3173092261 cites W3033756580 @default.
- W3173092261 cites W3034711653 @default.
- W3173092261 cites W3036525988 @default.
- W3173092261 cites W3037484586 @default.
- W3173092261 cites W3040141726 @default.
- W3173092261 cites W3040395637 @default.
- W3173092261 cites W3040440253 @default.
- W3173092261 cites W3049325061 @default.
- W3173092261 cites W3070973952 @default.
- W3173092261 cites W3073804858 @default.
- W3173092261 cites W3091586039 @default.
- W3173092261 cites W3094321215 @default.
- W3173092261 cites W3098986547 @default.
- W3173092261 cites W3105613079 @default.
- W3173092261 cites W3112561157 @default.
- W3173092261 cites W3119080408 @default.
- W3173092261 cites W3121081033 @default.
- W3173092261 cites W3121555817 @default.
- W3173092261 cites W3121921387 @default.
- W3173092261 cites W3126377271 @default.
- W3173092261 cites W3127076855 @default.
- W3173092261 cites W3130974254 @default.
- W3173092261 cites W3131694552 @default.
- W3173092261 cites W3135409471 @default.
- W3173092261 cites W3135913047 @default.
- W3173092261 cites W3136764492 @default.
- W3173092261 cites W4240082578 @default.
- W3173092261 cites W4243200333 @default.
- W3173092261 doi "https://doi.org/10.1016/j.compbiomed.2021.104531" @default.
- W3173092261 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8164361" @default.
- W3173092261 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34091385" @default.
- W3173092261 hasPublicationYear "2021" @default.
- W3173092261 type Work @default.
- W3173092261 sameAs 3173092261 @default.
- W3173092261 citedByCount "28" @default.
- W3173092261 countsByYear W31730922612021 @default.
- W3173092261 countsByYear W31730922612022 @default.
- W3173092261 countsByYear W31730922612023 @default.
- W3173092261 crossrefType "journal-article" @default.
- W3173092261 hasAuthorship W3173092261A5011789018 @default.