Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173100718> ?p ?o ?g. }
- W3173100718 endingPage "7912" @default.
- W3173100718 startingPage "7904" @default.
- W3173100718 abstract "The metallic phase of 1T-MoS2 nanoflowers (NFs) and the semiconducting phase of 2H-MoS2 NFs were prepared by a facile solvothermal and combustion method. The antibacterial activities, reactive oxygen species (ROS) generation, and light-driven antibacterial mechanism of metallic 1T-MoS2 NFs and semiconducting 2H-MoS2 NFs were demonstrated with the bacterium Escherichia coli (E. coli) under light irradiation. Results of the bacterial growth curve and ROS generation analyses revealed higher light-driven antibacterial activity of metallic 1T-MoS2 NFs compared to semiconducting 2H-MoS2 NFs. Electron paramagnetic resonance (EPR) spectroscopy demonstrated that the ROS of the superoxide anion radical •O2– was generated due to the incubation of 1T-MoS2 NFs and E. coli with light irradiation. Furthermore, E. coli incubated with metallic 1T-MoS2 NFs exhibited significant damage to the bacterial cell walls, complete bacterial destruction, and abnormal elongation after light irradiation. The light-driven antibacterial mechanism of metallic 1T-MoS2 NFs was examined, and we found that, under light irradiation, photoinduced electrons were generated by metallic 1T-MoS2 NFs, and then the photoinduced electrons reacted with oxygen to generate superoxide anion radical which induced bacterial death. For semiconducting 2H-MoS2 NFs, photoinduced electrons and holes rapidly recombined resulting in a decrease in ROS generation which diminished the light-driven antibacterial activity." @default.
- W3173100718 created "2021-06-22" @default.
- W3173100718 creator A5007082820 @default.
- W3173100718 creator A5022605666 @default.
- W3173100718 creator A5023599288 @default.
- W3173100718 creator A5036554821 @default.
- W3173100718 creator A5043983004 @default.
- W3173100718 creator A5048566214 @default.
- W3173100718 creator A5081236875 @default.
- W3173100718 creator A5081268430 @default.
- W3173100718 creator A5087171188 @default.
- W3173100718 date "2021-06-02" @default.
- W3173100718 modified "2023-10-18" @default.
- W3173100718 title "Phase-Dependent MoS<sub>2</sub> Nanoflowers for Light-Driven Antibacterial Application" @default.
- W3173100718 cites W1139314269 @default.
- W3173100718 cites W1759845614 @default.
- W3173100718 cites W1852185552 @default.
- W3173100718 cites W1878242839 @default.
- W3173100718 cites W1918844415 @default.
- W3173100718 cites W1978726655 @default.
- W3173100718 cites W1980790675 @default.
- W3173100718 cites W1983939896 @default.
- W3173100718 cites W2021823584 @default.
- W3173100718 cites W2025472145 @default.
- W3173100718 cites W2043775186 @default.
- W3173100718 cites W2048610167 @default.
- W3173100718 cites W2050831884 @default.
- W3173100718 cites W2064446848 @default.
- W3173100718 cites W2074598258 @default.
- W3173100718 cites W2075892592 @default.
- W3173100718 cites W2087103737 @default.
- W3173100718 cites W2117262972 @default.
- W3173100718 cites W2123209582 @default.
- W3173100718 cites W2150949653 @default.
- W3173100718 cites W2154007902 @default.
- W3173100718 cites W2157294920 @default.
- W3173100718 cites W2163392158 @default.
- W3173100718 cites W2199554062 @default.
- W3173100718 cites W2342787304 @default.
- W3173100718 cites W2514228198 @default.
- W3173100718 cites W2515325379 @default.
- W3173100718 cites W2527138228 @default.
- W3173100718 cites W2549697151 @default.
- W3173100718 cites W2558941103 @default.
- W3173100718 cites W2565209876 @default.
- W3173100718 cites W2592611352 @default.
- W3173100718 cites W2610502997 @default.
- W3173100718 cites W2625595950 @default.
- W3173100718 cites W2764299294 @default.
- W3173100718 cites W2765663968 @default.
- W3173100718 cites W2767652670 @default.
- W3173100718 cites W2789599305 @default.
- W3173100718 cites W2790574729 @default.
- W3173100718 cites W2795176403 @default.
- W3173100718 cites W2796240071 @default.
- W3173100718 cites W2810411702 @default.
- W3173100718 cites W2884945594 @default.
- W3173100718 cites W2887065277 @default.
- W3173100718 cites W2890773921 @default.
- W3173100718 cites W2890855301 @default.
- W3173100718 cites W2902256955 @default.
- W3173100718 cites W2917577241 @default.
- W3173100718 cites W2934906449 @default.
- W3173100718 cites W2938515413 @default.
- W3173100718 cites W2942971992 @default.
- W3173100718 cites W2949340480 @default.
- W3173100718 cites W2953753047 @default.
- W3173100718 cites W2955933795 @default.
- W3173100718 cites W2967799187 @default.
- W3173100718 cites W2972284258 @default.
- W3173100718 cites W2977785434 @default.
- W3173100718 cites W2993713960 @default.
- W3173100718 cites W2994133904 @default.
- W3173100718 cites W2995244058 @default.
- W3173100718 cites W2999823694 @default.
- W3173100718 cites W3013391007 @default.
- W3173100718 cites W3033838619 @default.
- W3173100718 cites W3048063502 @default.
- W3173100718 cites W3093625993 @default.
- W3173100718 cites W3098006072 @default.
- W3173100718 cites W3105613223 @default.
- W3173100718 cites W3107668581 @default.
- W3173100718 cites W3110819540 @default.
- W3173100718 cites W3111645166 @default.
- W3173100718 cites W3120635641 @default.
- W3173100718 cites W902260907 @default.
- W3173100718 doi "https://doi.org/10.1021/acssuschemeng.1c01868" @default.
- W3173100718 hasPublicationYear "2021" @default.
- W3173100718 type Work @default.
- W3173100718 sameAs 3173100718 @default.
- W3173100718 citedByCount "68" @default.
- W3173100718 countsByYear W31731007182021 @default.
- W3173100718 countsByYear W31731007182022 @default.
- W3173100718 countsByYear W31731007182023 @default.
- W3173100718 crossrefType "journal-article" @default.
- W3173100718 hasAuthorship W3173100718A5007082820 @default.
- W3173100718 hasAuthorship W3173100718A5022605666 @default.
- W3173100718 hasAuthorship W3173100718A5023599288 @default.