Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173126908> ?p ?o ?g. }
- W3173126908 abstract "The advent of deep learning has brought a significant improvement in the quality of generated media. However, with the increased level of photorealism, synthetic media are becoming hardly distinguishable from real ones, raising serious concerns about the spread of fake or manipulated information over the Internet. In this context, it is important to develop automated tools to reliably and timely detect synthetic media. In this work, we analyze the state-of-the-art methods for the detection of synthetic images, highlighting the key ingredients of the most successful approaches, and comparing their performance over existing generative architectures. We will devote special attention to realistic and challenging scenarios, like media uploaded on social networks or generated by new and unseen architectures, analyzing the impact of suitable augmentation and training strategies on the detectors’ generalization ability." @default.
- W3173126908 created "2021-06-22" @default.
- W3173126908 creator A5038286261 @default.
- W3173126908 creator A5038476909 @default.
- W3173126908 creator A5080842029 @default.
- W3173126908 creator A5081981044 @default.
- W3173126908 creator A5085769320 @default.
- W3173126908 date "2021-07-05" @default.
- W3173126908 modified "2023-09-30" @default.
- W3173126908 title "Are GAN Generated Images Easy to Detect? A Critical Analysis of the State-Of-The-Art" @default.
- W3173126908 cites W2055745001 @default.
- W3173126908 cites W2811414481 @default.
- W3173126908 cites W2888519208 @default.
- W3173126908 cites W2892948265 @default.
- W3173126908 cites W2907295878 @default.
- W3173126908 cites W2962793481 @default.
- W3173126908 cites W2963767194 @default.
- W3173126908 cites W2975558816 @default.
- W3173126908 cites W2979259381 @default.
- W3173126908 cites W2981803355 @default.
- W3173126908 cites W2991318208 @default.
- W3173126908 cites W3012472557 @default.
- W3173126908 cites W3034530968 @default.
- W3173126908 cites W3034577585 @default.
- W3173126908 cites W3034864980 @default.
- W3173126908 cites W3035574324 @default.
- W3173126908 cites W3043251718 @default.
- W3173126908 cites W3108281670 @default.
- W3173126908 cites W3133516147 @default.
- W3173126908 cites W3133932568 @default.
- W3173126908 doi "https://doi.org/10.1109/icme51207.2021.9428429" @default.
- W3173126908 hasPublicationYear "2021" @default.
- W3173126908 type Work @default.
- W3173126908 sameAs 3173126908 @default.
- W3173126908 citedByCount "35" @default.
- W3173126908 countsByYear W31731269082021 @default.
- W3173126908 countsByYear W31731269082022 @default.
- W3173126908 countsByYear W31731269082023 @default.
- W3173126908 crossrefType "proceedings-article" @default.
- W3173126908 hasAuthorship W3173126908A5038286261 @default.
- W3173126908 hasAuthorship W3173126908A5038476909 @default.
- W3173126908 hasAuthorship W3173126908A5080842029 @default.
- W3173126908 hasAuthorship W3173126908A5081981044 @default.
- W3173126908 hasAuthorship W3173126908A5085769320 @default.
- W3173126908 hasBestOaLocation W31731269082 @default.
- W3173126908 hasConcept C108583219 @default.
- W3173126908 hasConcept C110875604 @default.
- W3173126908 hasConcept C11413529 @default.
- W3173126908 hasConcept C119857082 @default.
- W3173126908 hasConcept C127413603 @default.
- W3173126908 hasConcept C134306372 @default.
- W3173126908 hasConcept C136764020 @default.
- W3173126908 hasConcept C151730666 @default.
- W3173126908 hasConcept C154945302 @default.
- W3173126908 hasConcept C177148314 @default.
- W3173126908 hasConcept C2522767166 @default.
- W3173126908 hasConcept C26517878 @default.
- W3173126908 hasConcept C2779343474 @default.
- W3173126908 hasConcept C2780589192 @default.
- W3173126908 hasConcept C33923547 @default.
- W3173126908 hasConcept C38652104 @default.
- W3173126908 hasConcept C39890363 @default.
- W3173126908 hasConcept C41008148 @default.
- W3173126908 hasConcept C48103436 @default.
- W3173126908 hasConcept C49774154 @default.
- W3173126908 hasConcept C518677369 @default.
- W3173126908 hasConcept C71901391 @default.
- W3173126908 hasConcept C78519656 @default.
- W3173126908 hasConcept C86803240 @default.
- W3173126908 hasConceptScore W3173126908C108583219 @default.
- W3173126908 hasConceptScore W3173126908C110875604 @default.
- W3173126908 hasConceptScore W3173126908C11413529 @default.
- W3173126908 hasConceptScore W3173126908C119857082 @default.
- W3173126908 hasConceptScore W3173126908C127413603 @default.
- W3173126908 hasConceptScore W3173126908C134306372 @default.
- W3173126908 hasConceptScore W3173126908C136764020 @default.
- W3173126908 hasConceptScore W3173126908C151730666 @default.
- W3173126908 hasConceptScore W3173126908C154945302 @default.
- W3173126908 hasConceptScore W3173126908C177148314 @default.
- W3173126908 hasConceptScore W3173126908C2522767166 @default.
- W3173126908 hasConceptScore W3173126908C26517878 @default.
- W3173126908 hasConceptScore W3173126908C2779343474 @default.
- W3173126908 hasConceptScore W3173126908C2780589192 @default.
- W3173126908 hasConceptScore W3173126908C33923547 @default.
- W3173126908 hasConceptScore W3173126908C38652104 @default.
- W3173126908 hasConceptScore W3173126908C39890363 @default.
- W3173126908 hasConceptScore W3173126908C41008148 @default.
- W3173126908 hasConceptScore W3173126908C48103436 @default.
- W3173126908 hasConceptScore W3173126908C49774154 @default.
- W3173126908 hasConceptScore W3173126908C518677369 @default.
- W3173126908 hasConceptScore W3173126908C71901391 @default.
- W3173126908 hasConceptScore W3173126908C78519656 @default.
- W3173126908 hasConceptScore W3173126908C86803240 @default.
- W3173126908 hasFunder F4320308239 @default.
- W3173126908 hasFunder F4320309327 @default.
- W3173126908 hasFunder F4320311649 @default.
- W3173126908 hasFunder F4320332815 @default.
- W3173126908 hasFunder F4320338294 @default.
- W3173126908 hasLocation W31731269081 @default.
- W3173126908 hasLocation W31731269082 @default.