Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173126985> ?p ?o ?g. }
- W3173126985 endingPage "106639" @default.
- W3173126985 startingPage "106639" @default.
- W3173126985 abstract "Early myelodysplastic syndrome (MDS) diagnosis can allow physicians to provide early treatment, which may delay advancement of MDS and improve quality of life. However, MDS often goes unrecognized and is difficult to distinguish from other disorders. We developed a machine learning algorithm for the prediction of MDS one year prior to clinical diagnosis of the disease. Retrospective analysis was performed on 790,470 patients over the age of 45 seen in the United States between 2007 and 2020. A gradient boosted decision tree model (XGB) was built to predict MDS diagnosis using vital signs, lab results, and demographics from the prior two years of patient data. The XGB model was compared to logistic regression (LR) and artificial neural network (ANN) models. The models did not use blast percentage and cytogenetics information as inputs. Predictions were made one year prior to MDS diagnosis as determined by International Classification of Diseases (ICD) codes, 9th and 10th revisions. Performance was assessed with regard to area under the receiver operating characteristic curve (AUROC). On a hold-out test set, the XGB model achieved an AUROC value of 0.87 for prediction of MDS one year prior to diagnosis, with a sensitivity of 0.79 and specificity of 0.80. The XGB model was compared against LR and ANN models, which achieved an AUROC of 0.838 and 0.832, respectively. Machine learning may allow for early MDS diagnosis MDS and more appropriate treatment administration." @default.
- W3173126985 created "2021-06-22" @default.
- W3173126985 creator A5023008666 @default.
- W3173126985 creator A5046943172 @default.
- W3173126985 creator A5046974631 @default.
- W3173126985 creator A5052838147 @default.
- W3173126985 creator A5054119515 @default.
- W3173126985 creator A5057498904 @default.
- W3173126985 creator A5076563017 @default.
- W3173126985 creator A5090742751 @default.
- W3173126985 date "2021-10-01" @default.
- W3173126985 modified "2023-09-27" @default.
- W3173126985 title "A machine learning approach to predicting risk of myelodysplastic syndrome" @default.
- W3173126985 cites W1539455863 @default.
- W3173126985 cites W1701718929 @default.
- W3173126985 cites W1914774283 @default.
- W3173126985 cites W1971209451 @default.
- W3173126985 cites W2009650262 @default.
- W3173126985 cites W2018930152 @default.
- W3173126985 cites W2027533784 @default.
- W3173126985 cites W2051228905 @default.
- W3173126985 cites W2052822682 @default.
- W3173126985 cites W2069566335 @default.
- W3173126985 cites W2078294866 @default.
- W3173126985 cites W2109076483 @default.
- W3173126985 cites W2115311597 @default.
- W3173126985 cites W2141443468 @default.
- W3173126985 cites W2150434749 @default.
- W3173126985 cites W2326726820 @default.
- W3173126985 cites W2463367156 @default.
- W3173126985 cites W2613642416 @default.
- W3173126985 cites W2739779296 @default.
- W3173126985 cites W2752161662 @default.
- W3173126985 cites W2755573426 @default.
- W3173126985 cites W2766983664 @default.
- W3173126985 cites W2810093671 @default.
- W3173126985 cites W2892971505 @default.
- W3173126985 cites W2973049920 @default.
- W3173126985 cites W2980865277 @default.
- W3173126985 cites W2983861296 @default.
- W3173126985 cites W2987977346 @default.
- W3173126985 cites W2995171379 @default.
- W3173126985 cites W3016786073 @default.
- W3173126985 cites W3037082682 @default.
- W3173126985 cites W3097048010 @default.
- W3173126985 cites W3111879617 @default.
- W3173126985 cites W755414764 @default.
- W3173126985 doi "https://doi.org/10.1016/j.leukres.2021.106639" @default.
- W3173126985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34171604" @default.
- W3173126985 hasPublicationYear "2021" @default.
- W3173126985 type Work @default.
- W3173126985 sameAs 3173126985 @default.
- W3173126985 citedByCount "8" @default.
- W3173126985 countsByYear W31731269852022 @default.
- W3173126985 countsByYear W31731269852023 @default.
- W3173126985 crossrefType "journal-article" @default.
- W3173126985 hasAuthorship W3173126985A5023008666 @default.
- W3173126985 hasAuthorship W3173126985A5046943172 @default.
- W3173126985 hasAuthorship W3173126985A5046974631 @default.
- W3173126985 hasAuthorship W3173126985A5052838147 @default.
- W3173126985 hasAuthorship W3173126985A5054119515 @default.
- W3173126985 hasAuthorship W3173126985A5057498904 @default.
- W3173126985 hasAuthorship W3173126985A5076563017 @default.
- W3173126985 hasAuthorship W3173126985A5090742751 @default.
- W3173126985 hasBestOaLocation W31731269851 @default.
- W3173126985 hasConcept C119857082 @default.
- W3173126985 hasConcept C126322002 @default.
- W3173126985 hasConcept C151956035 @default.
- W3173126985 hasConcept C154945302 @default.
- W3173126985 hasConcept C187212893 @default.
- W3173126985 hasConcept C41008148 @default.
- W3173126985 hasConcept C58471807 @default.
- W3173126985 hasConcept C71924100 @default.
- W3173126985 hasConcept C76318530 @default.
- W3173126985 hasConcept C84525736 @default.
- W3173126985 hasConceptScore W3173126985C119857082 @default.
- W3173126985 hasConceptScore W3173126985C126322002 @default.
- W3173126985 hasConceptScore W3173126985C151956035 @default.
- W3173126985 hasConceptScore W3173126985C154945302 @default.
- W3173126985 hasConceptScore W3173126985C187212893 @default.
- W3173126985 hasConceptScore W3173126985C41008148 @default.
- W3173126985 hasConceptScore W3173126985C58471807 @default.
- W3173126985 hasConceptScore W3173126985C71924100 @default.
- W3173126985 hasConceptScore W3173126985C76318530 @default.
- W3173126985 hasConceptScore W3173126985C84525736 @default.
- W3173126985 hasLocation W31731269851 @default.
- W3173126985 hasOpenAccess W3173126985 @default.
- W3173126985 hasPrimaryLocation W31731269851 @default.
- W3173126985 hasRelatedWork W1470425429 @default.
- W3173126985 hasRelatedWork W2799952019 @default.
- W3173126985 hasRelatedWork W2912689160 @default.
- W3173126985 hasRelatedWork W3204641204 @default.
- W3173126985 hasRelatedWork W3210877509 @default.
- W3173126985 hasRelatedWork W4239706975 @default.
- W3173126985 hasRelatedWork W4249746146 @default.
- W3173126985 hasRelatedWork W4283016678 @default.
- W3173126985 hasRelatedWork W4297832766 @default.
- W3173126985 hasRelatedWork W4318350883 @default.