Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173171029> ?p ?o ?g. }
- W3173171029 abstract "ABSTRACT Wastewater based surveillance has gained prominence and come to the forefront as a leading indicator of forecasting COVID-19 infection dynamics owing to its cost-effectiveness and its ability to inform early public health interventions. A university campus could especially benefit from wastewater surveillance as they are characterized by largely asymptomatic populations and are potential hotspots for transmission that necessitate frequent diagnostic testing. In this study, we employed a large-scale GIS (Geographic information systems) enabled building-level wastewater monitoring system associated with the on-campus residences of 7614 individuals. Sixty-eight automated wastewater samplers were deployed to monitor 239 campus buildings with a focus on residential buildings. Time-weighted composite samples were collected on a daily basis and analyzed within the same day. Sample processing was streamlined significantly through automation, reducing the turnaround time by 20-fold and exceeding the scale of similar surveillance programs by 10 to 100-fold, thereby overcoming one of the biggest bottlenecks in wastewater surveillance. An automated wastewater notification system was developed to alert residents to a positive wastewater sample associated with their residence and to encourage uptake of campus-provided asymptomatic testing at no charge. This system, integrated with the rest of the “Return to Learn” program at UC San Diego-led to the early diagnosis of nearly 85% of all COVID-19 cases on campus. Covid-19 testing rates increased by 1.9-13X following wastewater notifications. Our study shows the potential for a robust, efficient wastewater surveillance system to greatly reduce infection risk as college campuses and other high-risk environments reopen. IMPORTANCE Wastewater based epidemiology can be particularly valuable at University campuses where high-resolution spatial sampling in a well-controlled context could not only provide insight into what affects campus community as well as how those inferences can be extended to a broader city/county context. In the present study, a large-scale wastewater surveillance was successfully implemented on a large university campus enabling early detection of 85% of COVID-19 cases thereby averting potential outbreaks. The highly automated sample processing to reporting system enabled dramatically reduced the turnaround time to 5h (sample to result time) for 96 samples. Furthermore, miniaturization of the sample processing pipeline brought down the processing cost significantly ($13/sample). Taken together, these results show that such a system could greatly ameliorate long-term surveillance on such communities as they look to reopen." @default.
- W3173171029 created "2021-07-05" @default.
- W3173171029 creator A5002616190 @default.
- W3173171029 creator A5005255843 @default.
- W3173171029 creator A5007542787 @default.
- W3173171029 creator A5013800187 @default.
- W3173171029 creator A5022461817 @default.
- W3173171029 creator A5033881627 @default.
- W3173171029 creator A5039202077 @default.
- W3173171029 creator A5039234437 @default.
- W3173171029 creator A5042979343 @default.
- W3173171029 creator A5045050293 @default.
- W3173171029 creator A5059310658 @default.
- W3173171029 creator A5060643287 @default.
- W3173171029 creator A5064267152 @default.
- W3173171029 creator A5065368391 @default.
- W3173171029 creator A5072839298 @default.
- W3173171029 creator A5087126302 @default.
- W3173171029 date "2021-06-27" @default.
- W3173171029 modified "2023-10-12" @default.
- W3173171029 title "Rapid, large-scale wastewater surveillance and automated reporting system enabled early detection of nearly 85% of COVID-19 cases on a University campus" @default.
- W3173171029 cites W2135983085 @default.
- W3173171029 cites W3014221525 @default.
- W3173171029 cites W3016746341 @default.
- W3173171029 cites W3046859241 @default.
- W3173171029 cites W3087196161 @default.
- W3173171029 cites W3087611057 @default.
- W3173171029 cites W3100832837 @default.
- W3173171029 cites W3118011410 @default.
- W3173171029 cites W3125190111 @default.
- W3173171029 cites W3128503808 @default.
- W3173171029 cites W3134045318 @default.
- W3173171029 doi "https://doi.org/10.1101/2021.06.18.21259162" @default.
- W3173171029 hasPublicationYear "2021" @default.
- W3173171029 type Work @default.
- W3173171029 sameAs 3173171029 @default.
- W3173171029 citedByCount "3" @default.
- W3173171029 countsByYear W31731710292021 @default.
- W3173171029 countsByYear W31731710292022 @default.
- W3173171029 countsByYear W31731710292023 @default.
- W3173171029 crossrefType "posted-content" @default.
- W3173171029 hasAuthorship W3173171029A5002616190 @default.
- W3173171029 hasAuthorship W3173171029A5005255843 @default.
- W3173171029 hasAuthorship W3173171029A5007542787 @default.
- W3173171029 hasAuthorship W3173171029A5013800187 @default.
- W3173171029 hasAuthorship W3173171029A5022461817 @default.
- W3173171029 hasAuthorship W3173171029A5033881627 @default.
- W3173171029 hasAuthorship W3173171029A5039202077 @default.
- W3173171029 hasAuthorship W3173171029A5039234437 @default.
- W3173171029 hasAuthorship W3173171029A5042979343 @default.
- W3173171029 hasAuthorship W3173171029A5045050293 @default.
- W3173171029 hasAuthorship W3173171029A5059310658 @default.
- W3173171029 hasAuthorship W3173171029A5060643287 @default.
- W3173171029 hasAuthorship W3173171029A5064267152 @default.
- W3173171029 hasAuthorship W3173171029A5065368391 @default.
- W3173171029 hasAuthorship W3173171029A5072839298 @default.
- W3173171029 hasAuthorship W3173171029A5087126302 @default.
- W3173171029 hasBestOaLocation W31731710291 @default.
- W3173171029 hasConcept C127413603 @default.
- W3173171029 hasConcept C142724271 @default.
- W3173171029 hasConcept C144024400 @default.
- W3173171029 hasConcept C149923435 @default.
- W3173171029 hasConcept C176553487 @default.
- W3173171029 hasConcept C21547014 @default.
- W3173171029 hasConcept C2776269092 @default.
- W3173171029 hasConcept C2779134260 @default.
- W3173171029 hasConcept C3007834351 @default.
- W3173171029 hasConcept C3008058167 @default.
- W3173171029 hasConcept C39432304 @default.
- W3173171029 hasConcept C524204448 @default.
- W3173171029 hasConcept C71924100 @default.
- W3173171029 hasConcept C87717796 @default.
- W3173171029 hasConcept C94061648 @default.
- W3173171029 hasConcept C99454951 @default.
- W3173171029 hasConceptScore W3173171029C127413603 @default.
- W3173171029 hasConceptScore W3173171029C142724271 @default.
- W3173171029 hasConceptScore W3173171029C144024400 @default.
- W3173171029 hasConceptScore W3173171029C149923435 @default.
- W3173171029 hasConceptScore W3173171029C176553487 @default.
- W3173171029 hasConceptScore W3173171029C21547014 @default.
- W3173171029 hasConceptScore W3173171029C2776269092 @default.
- W3173171029 hasConceptScore W3173171029C2779134260 @default.
- W3173171029 hasConceptScore W3173171029C3007834351 @default.
- W3173171029 hasConceptScore W3173171029C3008058167 @default.
- W3173171029 hasConceptScore W3173171029C39432304 @default.
- W3173171029 hasConceptScore W3173171029C524204448 @default.
- W3173171029 hasConceptScore W3173171029C71924100 @default.
- W3173171029 hasConceptScore W3173171029C87717796 @default.
- W3173171029 hasConceptScore W3173171029C94061648 @default.
- W3173171029 hasConceptScore W3173171029C99454951 @default.
- W3173171029 hasLocation W31731710291 @default.
- W3173171029 hasLocation W31731710292 @default.
- W3173171029 hasOpenAccess W3173171029 @default.
- W3173171029 hasPrimaryLocation W31731710291 @default.
- W3173171029 hasRelatedWork W3113664224 @default.
- W3173171029 hasRelatedWork W3176864053 @default.
- W3173171029 hasRelatedWork W3198183218 @default.
- W3173171029 hasRelatedWork W4205317059 @default.
- W3173171029 hasRelatedWork W4205810683 @default.
- W3173171029 hasRelatedWork W4206548596 @default.