Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173177732> ?p ?o ?g. }
- W3173177732 abstract "The rapid development of antimalarial resistance motivates the continued search for novel compounds with a mode of action (MoA) different to current antimalarials. Phenotypic screening has delivered thousands of promising hit compounds without prior knowledge of the compounds’ exact target or MoA. Whilst the latter is not initially required to progress a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit prioritization, hit-to-lead optimization and preclinical combination studies in malaria research. The effects of drug treatment on a cell can be observed on systems level in changes in the transcriptome, proteome and metabolome. Machine learning (ML) algorithms are powerful tools able to deconvolute such complex chemically-induced transcriptional signatures to identify pathways on which a compound act and in this manner provide an indication of the MoA of a compound. In this study, we assessed different ML approaches for their ability to stratify antimalarial compounds based on varied chemically-induced transcriptional responses. We developed a rational gene selection approach that could identify predictive features for MoA to train and generate ML models. The best performing model could stratify compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. Moreover, only a limited set of 50 biomarkers was required to stratify compounds with similar MoA and define chemo-transcriptomic fingerprints for each compound. These fingerprints were unique for each compound and compounds with similar targets/MoA clustered together. The ML model was specific and sensitive enough to group new compounds into MoAs associated with their predicted target and was robust enough to be extended to also generate chemo-transcriptomic fingerprints for additional life cycle stages like immature gametocytes. This work therefore contributes a new strategy to rapidly, specifically and sensitively indicate the MoA of compounds based on chemo-transcriptomic fingerprints and holds promise to accelerate antimalarial drug discovery programs." @default.
- W3173177732 created "2021-07-05" @default.
- W3173177732 creator A5026175153 @default.
- W3173177732 creator A5056737097 @default.
- W3173177732 creator A5066083910 @default.
- W3173177732 date "2021-06-29" @default.
- W3173177732 modified "2023-09-25" @default.
- W3173177732 title "Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action" @default.
- W3173177732 cites W1535350845 @default.
- W3173177732 cites W1569416846 @default.
- W3173177732 cites W1727290854 @default.
- W3173177732 cites W1820161030 @default.
- W3173177732 cites W1978455510 @default.
- W3173177732 cites W1981382039 @default.
- W3173177732 cites W2015441785 @default.
- W3173177732 cites W2019690836 @default.
- W3173177732 cites W2048080607 @default.
- W3173177732 cites W2049017883 @default.
- W3173177732 cites W2083036182 @default.
- W3173177732 cites W2106374535 @default.
- W3173177732 cites W2112047656 @default.
- W3173177732 cites W2112534534 @default.
- W3173177732 cites W2126009359 @default.
- W3173177732 cites W2135155264 @default.
- W3173177732 cites W2146512944 @default.
- W3173177732 cites W2166670458 @default.
- W3173177732 cites W2169617851 @default.
- W3173177732 cites W2182240747 @default.
- W3173177732 cites W2201238125 @default.
- W3173177732 cites W2288877949 @default.
- W3173177732 cites W2293600471 @default.
- W3173177732 cites W2368906419 @default.
- W3173177732 cites W2397119464 @default.
- W3173177732 cites W2410743230 @default.
- W3173177732 cites W2415187468 @default.
- W3173177732 cites W2507411998 @default.
- W3173177732 cites W2518292292 @default.
- W3173177732 cites W2568475068 @default.
- W3173177732 cites W2573624079 @default.
- W3173177732 cites W2608011451 @default.
- W3173177732 cites W2614695515 @default.
- W3173177732 cites W2615058391 @default.
- W3173177732 cites W2739094208 @default.
- W3173177732 cites W2772481372 @default.
- W3173177732 cites W2782083554 @default.
- W3173177732 cites W2787055278 @default.
- W3173177732 cites W2788776141 @default.
- W3173177732 cites W2789894922 @default.
- W3173177732 cites W2791356417 @default.
- W3173177732 cites W2794916302 @default.
- W3173177732 cites W2810594107 @default.
- W3173177732 cites W2811178295 @default.
- W3173177732 cites W2856061632 @default.
- W3173177732 cites W2891838559 @default.
- W3173177732 cites W2892303699 @default.
- W3173177732 cites W2951273658 @default.
- W3173177732 cites W2953743022 @default.
- W3173177732 cites W2970824280 @default.
- W3173177732 cites W2979578263 @default.
- W3173177732 cites W2979947476 @default.
- W3173177732 cites W2994952652 @default.
- W3173177732 cites W3000045279 @default.
- W3173177732 cites W3000139398 @default.
- W3173177732 cites W3006653553 @default.
- W3173177732 cites W3008444660 @default.
- W3173177732 cites W3016935188 @default.
- W3173177732 cites W3119218674 @default.
- W3173177732 cites W3133992448 @default.
- W3173177732 cites W3141521375 @default.
- W3173177732 cites W4254687493 @default.
- W3173177732 doi "https://doi.org/10.3389/fcimb.2021.688256" @default.
- W3173177732 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8277430" @default.
- W3173177732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34268139" @default.
- W3173177732 hasPublicationYear "2021" @default.
- W3173177732 type Work @default.
- W3173177732 sameAs 3173177732 @default.
- W3173177732 citedByCount "1" @default.
- W3173177732 countsByYear W31731777322023 @default.
- W3173177732 crossrefType "journal-article" @default.
- W3173177732 hasAuthorship W3173177732A5026175153 @default.
- W3173177732 hasAuthorship W3173177732A5056737097 @default.
- W3173177732 hasAuthorship W3173177732A5066083910 @default.
- W3173177732 hasBestOaLocation W31731777321 @default.
- W3173177732 hasConcept C104317684 @default.
- W3173177732 hasConcept C121587506 @default.
- W3173177732 hasConcept C135870905 @default.
- W3173177732 hasConcept C150194340 @default.
- W3173177732 hasConcept C162317418 @default.
- W3173177732 hasConcept C162324750 @default.
- W3173177732 hasConcept C203014093 @default.
- W3173177732 hasConcept C21565614 @default.
- W3173177732 hasConcept C2777615720 @default.
- W3173177732 hasConcept C2778048844 @default.
- W3173177732 hasConcept C2778371730 @default.
- W3173177732 hasConcept C33070731 @default.
- W3173177732 hasConcept C539667460 @default.
- W3173177732 hasConcept C54355233 @default.
- W3173177732 hasConcept C60644358 @default.
- W3173177732 hasConcept C70721500 @default.
- W3173177732 hasConcept C74187038 @default.