Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173185810> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3173185810 endingPage "1088" @default.
- W3173185810 startingPage "1075" @default.
- W3173185810 abstract "The white corpuscles nucleus segmentation from microscopic blood images is major steps to diagnose blood-related diseases. The perfect and speedy segmentation system assists the hematologists to identify the diseases and take appropriate decision for better treatment. Therefore, fully automated white corpuscles nucleus segmentation model using deep convolution neural network, is proposed in the present study. The proposed model uses the combination of ‘binary_cross_entropy’ and ‘adam’ for maintaining learning rate in each network weight. To validate the potential and capability of the above proposed solution, ALL-IDB2 dataset is used. The complete set of images is partitioned into training and testing set and tedious experimentations have been performed. The best performing model is selected and the obtained training and testing accuracy of best performing model is reported as 98.69 % and 99.02 %, respectively. The staging analysis of proposed model is evaluated using sensitivity, specificity, Jaccard index, dice coefficient, accuracy and structure similarity index. The capability of proposed model is compared with performance of the region-based contour and fuzzy-based level-set method for same set of images and concluded that proposed model method is more accurate and effective for clinical purpose." @default.
- W3173185810 created "2021-07-05" @default.
- W3173185810 creator A5021767359 @default.
- W3173185810 creator A5025052273 @default.
- W3173185810 creator A5026836499 @default.
- W3173185810 creator A5058856424 @default.
- W3173185810 date "2022-01-25" @default.
- W3173185810 modified "2023-10-18" @default.
- W3173185810 title "Automated white corpuscles nucleus segmentation using deep neural network from microscopic blood smear" @default.
- W3173185810 cites W1526147865 @default.
- W3173185810 cites W1979159352 @default.
- W3173185810 cites W1991964403 @default.
- W3173185810 cites W2012442592 @default.
- W3173185810 cites W2080860745 @default.
- W3173185810 cites W2118386984 @default.
- W3173185810 cites W2344654247 @default.
- W3173185810 cites W2484322924 @default.
- W3173185810 cites W2498418174 @default.
- W3173185810 cites W2790696291 @default.
- W3173185810 cites W2794208501 @default.
- W3173185810 cites W2803432986 @default.
- W3173185810 cites W2805735218 @default.
- W3173185810 cites W2896174030 @default.
- W3173185810 cites W2912449434 @default.
- W3173185810 cites W2924872296 @default.
- W3173185810 cites W2947556306 @default.
- W3173185810 cites W2959123891 @default.
- W3173185810 cites W2963881378 @default.
- W3173185810 cites W2964227007 @default.
- W3173185810 cites W2981665124 @default.
- W3173185810 cites W2997192013 @default.
- W3173185810 cites W2998825217 @default.
- W3173185810 cites W2999770235 @default.
- W3173185810 cites W3012618518 @default.
- W3173185810 cites W3022215132 @default.
- W3173185810 cites W3032676645 @default.
- W3173185810 doi "https://doi.org/10.3233/jifs-189773" @default.
- W3173185810 hasPublicationYear "2022" @default.
- W3173185810 type Work @default.
- W3173185810 sameAs 3173185810 @default.
- W3173185810 citedByCount "5" @default.
- W3173185810 countsByYear W31731858102021 @default.
- W3173185810 countsByYear W31731858102022 @default.
- W3173185810 countsByYear W31731858102023 @default.
- W3173185810 crossrefType "journal-article" @default.
- W3173185810 hasAuthorship W3173185810A5021767359 @default.
- W3173185810 hasAuthorship W3173185810A5025052273 @default.
- W3173185810 hasAuthorship W3173185810A5026836499 @default.
- W3173185810 hasAuthorship W3173185810A5058856424 @default.
- W3173185810 hasConcept C108583219 @default.
- W3173185810 hasConcept C153008295 @default.
- W3173185810 hasConcept C153180895 @default.
- W3173185810 hasConcept C154945302 @default.
- W3173185810 hasConcept C169903167 @default.
- W3173185810 hasConcept C177264268 @default.
- W3173185810 hasConcept C199360897 @default.
- W3173185810 hasConcept C203519979 @default.
- W3173185810 hasConcept C41008148 @default.
- W3173185810 hasConcept C50644808 @default.
- W3173185810 hasConcept C81363708 @default.
- W3173185810 hasConcept C89600930 @default.
- W3173185810 hasConceptScore W3173185810C108583219 @default.
- W3173185810 hasConceptScore W3173185810C153008295 @default.
- W3173185810 hasConceptScore W3173185810C153180895 @default.
- W3173185810 hasConceptScore W3173185810C154945302 @default.
- W3173185810 hasConceptScore W3173185810C169903167 @default.
- W3173185810 hasConceptScore W3173185810C177264268 @default.
- W3173185810 hasConceptScore W3173185810C199360897 @default.
- W3173185810 hasConceptScore W3173185810C203519979 @default.
- W3173185810 hasConceptScore W3173185810C41008148 @default.
- W3173185810 hasConceptScore W3173185810C50644808 @default.
- W3173185810 hasConceptScore W3173185810C81363708 @default.
- W3173185810 hasConceptScore W3173185810C89600930 @default.
- W3173185810 hasIssue "2" @default.
- W3173185810 hasLocation W31731858101 @default.
- W3173185810 hasOpenAccess W3173185810 @default.
- W3173185810 hasPrimaryLocation W31731858101 @default.
- W3173185810 hasRelatedWork W2738221750 @default.
- W3173185810 hasRelatedWork W2795329967 @default.
- W3173185810 hasRelatedWork W2996106022 @default.
- W3173185810 hasRelatedWork W3095523211 @default.
- W3173185810 hasRelatedWork W3102253946 @default.
- W3173185810 hasRelatedWork W3135324209 @default.
- W3173185810 hasRelatedWork W3144574764 @default.
- W3173185810 hasRelatedWork W3166467183 @default.
- W3173185810 hasRelatedWork W4226289457 @default.
- W3173185810 hasRelatedWork W4293211451 @default.
- W3173185810 hasVolume "42" @default.
- W3173185810 isParatext "false" @default.
- W3173185810 isRetracted "false" @default.
- W3173185810 magId "3173185810" @default.
- W3173185810 workType "article" @default.