Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173259688> ?p ?o ?g. }
- W3173259688 endingPage "109835" @default.
- W3173259688 startingPage "109835" @default.
- W3173259688 abstract "<h2>Abstract</h2><h3>Objectives</h3> To investigate the effect of reader experience, calcification and image quality on the performance of deep learning (DL) powered coronary CT angiography (CCTA) in automatically detecting obstructive coronary artery disease (CAD) with invasive coronary angiography (ICA) as reference standard. <h3>Methods</h3> A total of 165 patients (680 vessels and 1505 segments) were included in this study. Three sessions were performed in order: (1) The artificial intelligence (AI) software automatically processed CCTA images, stenosis degree and processing time were recorded for each case; (2) Six cardiovascular radiologists with different experiences (low/ intermediate/ high experience) independently performed image post-processing and interpretation of CCTA, (3) AI + human reading was performed. Luminal stenosis ≥50% was defined as obstructive CAD in ICA and CCTA. Diagnostic performances of AI, human reading and AI + human reading were evaluated and compared on a per-patient, per-vessel and per-segment basis with ICA as reference standard. The effects of calcification and image quality on the diagnostic performance were also studied. <h3>Results</h3> The average post-processing and interpretation times of AI was 2.3 ± 0.6 min per case, reduced by 76%, 72%, 69% compared with low/ intermediate/ high experience readers (all P < 0.001), respectively. On a per-patient, per-vessel and per-segment basis, with ICA as reference method, the AI overall diagnostic sensitivity for detecting obstructive CAD were 90.5%, 81.4%, 72.9%, the specificity was 82.3%, 93.9%, 95.0%, with the corresponding areas under the curve (AUCs) of 0.90, 0.90, 0.87, respectively. Compared to human readers, the diagnostic performance of AI was higher than that of low experience readers (all P < 0.001). The diagnostic performance of AI + human reading was higher than human reading alone, and AI + human readers' ability to correctly reclassify obstructive CAD was also improved, especially for low experience readers (Per-patient, the net reclassification improvement (NRI) = 0.085; per-vessel, NRI = 0.070; and per-segment, NRI = 0.068, all P < 0.001). The diagnostic performance of AI was not significantly affected by calcification and image quality (all P > 0.05). <h3>Conclusions</h3> AI can substantially shorten the post-processing time, while AI + human reading model can significantly improve the diagnostic performance compared with human readers, especially for inexperienced readers, regardless of calcification severity and image quality." @default.
- W3173259688 created "2021-07-05" @default.
- W3173259688 creator A5012107181 @default.
- W3173259688 creator A5019909333 @default.
- W3173259688 creator A5021957840 @default.
- W3173259688 creator A5024807170 @default.
- W3173259688 creator A5024814634 @default.
- W3173259688 creator A5032320397 @default.
- W3173259688 creator A5037170104 @default.
- W3173259688 creator A5037391162 @default.
- W3173259688 creator A5047098889 @default.
- W3173259688 creator A5050645641 @default.
- W3173259688 creator A5062400152 @default.
- W3173259688 creator A5090908195 @default.
- W3173259688 creator A5091004173 @default.
- W3173259688 date "2021-09-01" @default.
- W3173259688 modified "2023-10-16" @default.
- W3173259688 title "Deep learning powered coronary CT angiography for detecting obstructive coronary artery disease: The effect of reader experience, calcification and image quality" @default.
- W3173259688 cites W1147298420 @default.
- W3173259688 cites W1964330070 @default.
- W3173259688 cites W1984752340 @default.
- W3173259688 cites W1985545686 @default.
- W3173259688 cites W2031576042 @default.
- W3173259688 cites W2042949995 @default.
- W3173259688 cites W2072874640 @default.
- W3173259688 cites W2080435569 @default.
- W3173259688 cites W2096017602 @default.
- W3173259688 cites W2096682736 @default.
- W3173259688 cites W2102504236 @default.
- W3173259688 cites W2125972369 @default.
- W3173259688 cites W2127649313 @default.
- W3173259688 cites W2153785016 @default.
- W3173259688 cites W2253429366 @default.
- W3173259688 cites W2345003174 @default.
- W3173259688 cites W2518912440 @default.
- W3173259688 cites W2574736299 @default.
- W3173259688 cites W2588978745 @default.
- W3173259688 cites W2785645041 @default.
- W3173259688 cites W2798237365 @default.
- W3173259688 cites W2801688119 @default.
- W3173259688 cites W2810349670 @default.
- W3173259688 cites W2902881683 @default.
- W3173259688 cites W2948522751 @default.
- W3173259688 cites W2953282350 @default.
- W3173259688 cites W2968194066 @default.
- W3173259688 cites W2973091513 @default.
- W3173259688 cites W2973999706 @default.
- W3173259688 cites W2988799679 @default.
- W3173259688 cites W2996287395 @default.
- W3173259688 cites W3003904436 @default.
- W3173259688 cites W3007941026 @default.
- W3173259688 cites W3011371150 @default.
- W3173259688 cites W3014232964 @default.
- W3173259688 cites W3040882690 @default.
- W3173259688 cites W3041806057 @default.
- W3173259688 cites W3084846387 @default.
- W3173259688 cites W53851123 @default.
- W3173259688 doi "https://doi.org/10.1016/j.ejrad.2021.109835" @default.
- W3173259688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34237493" @default.
- W3173259688 hasPublicationYear "2021" @default.
- W3173259688 type Work @default.
- W3173259688 sameAs 3173259688 @default.
- W3173259688 citedByCount "16" @default.
- W3173259688 countsByYear W31732596882021 @default.
- W3173259688 countsByYear W31732596882022 @default.
- W3173259688 countsByYear W31732596882023 @default.
- W3173259688 crossrefType "journal-article" @default.
- W3173259688 hasAuthorship W3173259688A5012107181 @default.
- W3173259688 hasAuthorship W3173259688A5019909333 @default.
- W3173259688 hasAuthorship W3173259688A5021957840 @default.
- W3173259688 hasAuthorship W3173259688A5024807170 @default.
- W3173259688 hasAuthorship W3173259688A5024814634 @default.
- W3173259688 hasAuthorship W3173259688A5032320397 @default.
- W3173259688 hasAuthorship W3173259688A5037170104 @default.
- W3173259688 hasAuthorship W3173259688A5037391162 @default.
- W3173259688 hasAuthorship W3173259688A5047098889 @default.
- W3173259688 hasAuthorship W3173259688A5050645641 @default.
- W3173259688 hasAuthorship W3173259688A5062400152 @default.
- W3173259688 hasAuthorship W3173259688A5090908195 @default.
- W3173259688 hasAuthorship W3173259688A5091004173 @default.
- W3173259688 hasConcept C126838900 @default.
- W3173259688 hasConcept C164705383 @default.
- W3173259688 hasConcept C2778213512 @default.
- W3173259688 hasConcept C2780309369 @default.
- W3173259688 hasConcept C2994533308 @default.
- W3173259688 hasConcept C3019004856 @default.
- W3173259688 hasConcept C500558357 @default.
- W3173259688 hasConcept C71924100 @default.
- W3173259688 hasConceptScore W3173259688C126838900 @default.
- W3173259688 hasConceptScore W3173259688C164705383 @default.
- W3173259688 hasConceptScore W3173259688C2778213512 @default.
- W3173259688 hasConceptScore W3173259688C2780309369 @default.
- W3173259688 hasConceptScore W3173259688C2994533308 @default.
- W3173259688 hasConceptScore W3173259688C3019004856 @default.
- W3173259688 hasConceptScore W3173259688C500558357 @default.
- W3173259688 hasConceptScore W3173259688C71924100 @default.
- W3173259688 hasFunder F4320321001 @default.
- W3173259688 hasFunder F4320335777 @default.