Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173279392> ?p ?o ?g. }
- W3173279392 endingPage "1556" @default.
- W3173279392 startingPage "1548" @default.
- W3173279392 abstract "In a previous paper we presented the results of applying machine learning to classify whether an HI 21-cm absorption spectrum arises in a source intervening the sight-line to a more distant radio source or within the host of the radio source itself. This is usually determined from an optical spectrum giving the source redshift. However, not only will this be impractical for the large number of sources expected to be detected with the Square Kilometre Array, but bright optical sources are the most ultra-violet luminous at high redshift and so bias against the detection of cool, neutral gas. Adding another 44, mostly newly detected absorbers, to the previous sample of 92, we test four different machine learning algorithms, again using the line properties (width, depth and number of Gaussian fits) as features. Of these algorithms, three gave a some improvement over the previous sample, with a logistic regression model giving the best results. This suggests that the inclusion of further training data, as new absorbers are detected, will further increase the prediction accuracy above the current 80%. We use the logistic regression model to classify the z = 0.42 absorption towards PKS 1657-298 and find this to be associated, which is consistent with a previous study which determined a similar redshift from the K-band magnitude-redshift relation." @default.
- W3173279392 created "2021-07-05" @default.
- W3173279392 creator A5032951052 @default.
- W3173279392 date "2021-07-02" @default.
- W3173279392 modified "2023-10-15" @default.
- W3173279392 title "Intervening or associated? Machine learning classification of redshifted H <scp>i</scp> 21-cm absorption" @default.
- W3173279392 cites W1598902974 @default.
- W3173279392 cites W1926882107 @default.
- W3173279392 cites W1948511999 @default.
- W3173279392 cites W1968450250 @default.
- W3173279392 cites W1969875327 @default.
- W3173279392 cites W1970058472 @default.
- W3173279392 cites W1974212715 @default.
- W3173279392 cites W1979115990 @default.
- W3173279392 cites W1986643693 @default.
- W3173279392 cites W2009096246 @default.
- W3173279392 cites W2034892354 @default.
- W3173279392 cites W2064308618 @default.
- W3173279392 cites W2066676720 @default.
- W3173279392 cites W2074259895 @default.
- W3173279392 cites W2114232018 @default.
- W3173279392 cites W2124219338 @default.
- W3173279392 cites W2127490819 @default.
- W3173279392 cites W2128515757 @default.
- W3173279392 cites W2130363859 @default.
- W3173279392 cites W2131150711 @default.
- W3173279392 cites W2133990480 @default.
- W3173279392 cites W2139247602 @default.
- W3173279392 cites W2142220522 @default.
- W3173279392 cites W2161135061 @default.
- W3173279392 cites W2212386031 @default.
- W3173279392 cites W2225836421 @default.
- W3173279392 cites W2239157130 @default.
- W3173279392 cites W2253597312 @default.
- W3173279392 cites W2337095297 @default.
- W3173279392 cites W2498530156 @default.
- W3173279392 cites W2546745436 @default.
- W3173279392 cites W2553093533 @default.
- W3173279392 cites W2560093780 @default.
- W3173279392 cites W2593125901 @default.
- W3173279392 cites W2599395912 @default.
- W3173279392 cites W2623459029 @default.
- W3173279392 cites W2724593991 @default.
- W3173279392 cites W2761862871 @default.
- W3173279392 cites W2773387254 @default.
- W3173279392 cites W2798705935 @default.
- W3173279392 cites W2885711112 @default.
- W3173279392 cites W2899556924 @default.
- W3173279392 cites W2908213869 @default.
- W3173279392 cites W2909575357 @default.
- W3173279392 cites W2950793217 @default.
- W3173279392 cites W2953024558 @default.
- W3173279392 cites W2971474165 @default.
- W3173279392 cites W2982293780 @default.
- W3173279392 cites W3000970247 @default.
- W3173279392 cites W3014602627 @default.
- W3173279392 cites W3041669110 @default.
- W3173279392 cites W3082642367 @default.
- W3173279392 cites W3084119387 @default.
- W3173279392 cites W3098790947 @default.
- W3173279392 cites W3099047894 @default.
- W3173279392 cites W3099219073 @default.
- W3173279392 cites W3100069253 @default.
- W3173279392 cites W3101427811 @default.
- W3173279392 cites W3102488082 @default.
- W3173279392 cites W3103544567 @default.
- W3173279392 cites W3104012017 @default.
- W3173279392 cites W3105754639 @default.
- W3173279392 cites W3105984128 @default.
- W3173279392 cites W3110355499 @default.
- W3173279392 cites W3124133826 @default.
- W3173279392 cites W3124271762 @default.
- W3173279392 cites W3131749965 @default.
- W3173279392 cites W4289784643 @default.
- W3173279392 doi "https://doi.org/10.1093/mnras/stab1865" @default.
- W3173279392 hasPublicationYear "2021" @default.
- W3173279392 type Work @default.
- W3173279392 sameAs 3173279392 @default.
- W3173279392 citedByCount "4" @default.
- W3173279392 countsByYear W31732793922021 @default.
- W3173279392 countsByYear W31732793922022 @default.
- W3173279392 countsByYear W31732793922023 @default.
- W3173279392 crossrefType "journal-article" @default.
- W3173279392 hasAuthorship W3173279392A5032951052 @default.
- W3173279392 hasBestOaLocation W31732793921 @default.
- W3173279392 hasConcept C119857082 @default.
- W3173279392 hasConcept C120665830 @default.
- W3173279392 hasConcept C121332964 @default.
- W3173279392 hasConcept C125287762 @default.
- W3173279392 hasConcept C151956035 @default.
- W3173279392 hasConcept C163716315 @default.
- W3173279392 hasConcept C198352243 @default.
- W3173279392 hasConcept C2524010 @default.
- W3173279392 hasConcept C2780928442 @default.
- W3173279392 hasConcept C33024259 @default.
- W3173279392 hasConcept C33923547 @default.
- W3173279392 hasConcept C41008148 @default.
- W3173279392 hasConcept C44870925 @default.