Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173306071> ?p ?o ?g. }
- W3173306071 endingPage "107149" @default.
- W3173306071 startingPage "107149" @default.
- W3173306071 abstract "The adoptions of mini-channel and nanofluid are potential technologies to improve the heat transfer capability. The present study experimentally investigated the flow and thermal performance of EG/water based ZnO nanofluid inside a mini-channel with serrated fins with an equivalent diameter of 1.59 mm. EG/water mixture with a mass fraction of 40%/60% served as the base fluid. Nanofluids with a volumetric concentration of 0.75 vol% and 1.5 vol% were prepared. The thermophysical properties of viscosity, density and thermal conductivity were measured. It reveals that although the adding of nanoparticles is able to improve the thermal conductivity by 4.2% on average, the viscosity also enlarges remarkably by up to 18.9%. The measured density and thermal conductivity can be predicted accurately by existing formulations. As all correlations underestimate the viscosity, a new one is proposed for the fabricated nanofluid with a small Mean Absolute Relative Deviation (MARD) of 0.1%. The Nusselt number can be averagely improved by 10.6% and 13.2% for the 0.75 vol% and 1.5 vol% nanofluid with a corresponding sacrifice of friction factor augmentation of 31.2% and 47.3% respectively due to the significant augmentation of viscosity, which results in a relatively small heat transfer coefficient enhancement ratio of 0.92–1.09 under the same pumping power. In addition, the heat transfer enhancement shows a nonlinear increment with the concentration and a higher relative enhancement is found at a lower concentration. This indirectly indicates that the heat transfer does not always increase with the concentration. Even though some published correlations present acceptable predictions for the tested flow and thermal performance of EG/water based ZnO nanofluid, the newly developed Backpropagation Artificial Neural Networks (BP-ANNs) show even better prediction accuracies for Nusselt number and friction factor with the MARDs of 0.39% and 0.35% respectively. Our study is expected to give valuable data sources and inspiration for future investigation on hydrodynamic and thermal behavior of nanofluids." @default.
- W3173306071 created "2021-07-05" @default.
- W3173306071 creator A5001515276 @default.
- W3173306071 creator A5024770352 @default.
- W3173306071 creator A5070086302 @default.
- W3173306071 date "2021-12-01" @default.
- W3173306071 modified "2023-09-30" @default.
- W3173306071 title "Experimental and artificial neural network based study on the heat transfer and flow performance of ZnO-EG/water nanofluid in a mini-channel with serrated fins" @default.
- W3173306071 cites W1969951832 @default.
- W3173306071 cites W1973050719 @default.
- W3173306071 cites W1976486593 @default.
- W3173306071 cites W1984002118 @default.
- W3173306071 cites W1985261292 @default.
- W3173306071 cites W1994157911 @default.
- W3173306071 cites W2002728487 @default.
- W3173306071 cites W2009336601 @default.
- W3173306071 cites W2009556137 @default.
- W3173306071 cites W2009737117 @default.
- W3173306071 cites W2021170834 @default.
- W3173306071 cites W2022740096 @default.
- W3173306071 cites W2024030723 @default.
- W3173306071 cites W2026788295 @default.
- W3173306071 cites W2028531223 @default.
- W3173306071 cites W2045380600 @default.
- W3173306071 cites W2049526702 @default.
- W3173306071 cites W2051391930 @default.
- W3173306071 cites W2051623369 @default.
- W3173306071 cites W2051751760 @default.
- W3173306071 cites W2053511129 @default.
- W3173306071 cites W2057627584 @default.
- W3173306071 cites W2057856329 @default.
- W3173306071 cites W2066278761 @default.
- W3173306071 cites W2069952886 @default.
- W3173306071 cites W2073473215 @default.
- W3173306071 cites W2074976029 @default.
- W3173306071 cites W2081018619 @default.
- W3173306071 cites W2083846085 @default.
- W3173306071 cites W2087310695 @default.
- W3173306071 cites W2106876537 @default.
- W3173306071 cites W2122795128 @default.
- W3173306071 cites W2133576861 @default.
- W3173306071 cites W2133599163 @default.
- W3173306071 cites W2134616821 @default.
- W3173306071 cites W2141918308 @default.
- W3173306071 cites W2160187305 @default.
- W3173306071 cites W2191284563 @default.
- W3173306071 cites W2265571583 @default.
- W3173306071 cites W2274634715 @default.
- W3173306071 cites W2282190727 @default.
- W3173306071 cites W2312531053 @default.
- W3173306071 cites W2313420733 @default.
- W3173306071 cites W2320686008 @default.
- W3173306071 cites W2327840167 @default.
- W3173306071 cites W2440261411 @default.
- W3173306071 cites W2518761809 @default.
- W3173306071 cites W2524415602 @default.
- W3173306071 cites W2529969980 @default.
- W3173306071 cites W2532362592 @default.
- W3173306071 cites W2559889254 @default.
- W3173306071 cites W2592275233 @default.
- W3173306071 cites W2602194826 @default.
- W3173306071 cites W2602481160 @default.
- W3173306071 cites W2610455343 @default.
- W3173306071 cites W2769211284 @default.
- W3173306071 cites W2802345713 @default.
- W3173306071 cites W2883961922 @default.
- W3173306071 cites W2889088435 @default.
- W3173306071 cites W2890578784 @default.
- W3173306071 cites W2901489802 @default.
- W3173306071 cites W2934873111 @default.
- W3173306071 cites W2980080777 @default.
- W3173306071 cites W2982178121 @default.
- W3173306071 cites W2997791226 @default.
- W3173306071 cites W3004179230 @default.
- W3173306071 cites W3004566969 @default.
- W3173306071 cites W3046819028 @default.
- W3173306071 cites W3080724852 @default.
- W3173306071 cites W3082278141 @default.
- W3173306071 cites W3112215575 @default.
- W3173306071 cites W944912343 @default.
- W3173306071 doi "https://doi.org/10.1016/j.ijthermalsci.2021.107149" @default.
- W3173306071 hasPublicationYear "2021" @default.
- W3173306071 type Work @default.
- W3173306071 sameAs 3173306071 @default.
- W3173306071 citedByCount "13" @default.
- W3173306071 countsByYear W31733060712021 @default.
- W3173306071 countsByYear W31733060712022 @default.
- W3173306071 countsByYear W31733060712023 @default.
- W3173306071 crossrefType "journal-article" @default.
- W3173306071 hasAuthorship W3173306071A5001515276 @default.
- W3173306071 hasAuthorship W3173306071A5024770352 @default.
- W3173306071 hasAuthorship W3173306071A5070086302 @default.
- W3173306071 hasConcept C121332964 @default.
- W3173306071 hasConcept C127172972 @default.
- W3173306071 hasConcept C130230704 @default.
- W3173306071 hasConcept C159985019 @default.
- W3173306071 hasConcept C182748727 @default.
- W3173306071 hasConcept C192562407 @default.