Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173340191> ?p ?o ?g. }
- W3173340191 abstract "Abstract Neurite orientation dispersion and density imaging (NODDI) estimates microstructural properties of brain tissue relating to the organisation and processing capacity of neurites, which are essential elements for neuronal communication. Descriptive statistics of NODDI tissue metrics are commonly analysed in regions-of-interest (ROI) to identify brain-phenotype associations. Here, the conventional method to calculate the ROI mean weights all voxels equally. However, this produces biased estimates in the presence of CSF partial volume. This study introduces the tissue-weighted mean, which calculates the mean NODDI metric across the tissue within an ROI, utilising the tissue fraction estimate from NODDI to reduce estimation bias. We demonstrate the proposed mean in a study of white matter abnormalities in young onset Alzheimer’s disease (YOAD). Results show the conventional mean induces significant bias that correlates with CSF partial volume, primarily affecting periventricular regions and more so in YOAD subjects than in healthy controls. Due to the differential extent of bias between healthy controls and YOAD subjects, the conventional mean under- or over-estimated the effect size for group differences in many ROIs. This demonstrates the importance of using the correct estimation procedure when inferring group differences in studies where the extent of CSF partial volume differs between groups. These findings are robust across different acquisition and processing conditions. Bias persists in ROIs at higher image resolution, as demonstrated using data obtained from the third phase of the Alzheimer’s disease neuroimaging initiative (ADNI); and when performing ROI analysis in template space. This suggests that conventional ROI means of NODDI metrics are biased estimates under most contemporary experimental conditions, the correction of which requires the proposed tissue-weighted mean. The tissue-weighted mean produces accurate estimates of ROI means and group differences when ROIs contain voxels with CSF partial volume. In addition to NODDI, the technique can be applied to other multi-compartment models that account for CSF partial volume, such as the free water elimination method. We expect the technique to help generate new insights into normal and abnormal variation in tissue microstructure of regions typically confounded by CSF partial volume, such as those in individuals with larger ventricles due to atrophy associated with neurodegenerative disease." @default.
- W3173340191 created "2021-07-05" @default.
- W3173340191 creator A5005739211 @default.
- W3173340191 creator A5022956337 @default.
- W3173340191 creator A5038279757 @default.
- W3173340191 creator A5042212695 @default.
- W3173340191 creator A5043230316 @default.
- W3173340191 creator A5046384452 @default.
- W3173340191 creator A5065322925 @default.
- W3173340191 creator A5072978117 @default.
- W3173340191 creator A5087017337 @default.
- W3173340191 date "2021-06-30" @default.
- W3173340191 modified "2023-10-16" @default.
- W3173340191 title "Not all voxels are created equal: reducing estimation bias in regional NODDI metrics using tissue-weighted means" @default.
- W3173340191 cites W1501048741 @default.
- W3173340191 cites W1526085390 @default.
- W3173340191 cites W1536729363 @default.
- W3173340191 cites W1798098464 @default.
- W3173340191 cites W1964802316 @default.
- W3173340191 cites W1969101487 @default.
- W3173340191 cites W1982547105 @default.
- W3173340191 cites W1982689204 @default.
- W3173340191 cites W1997732141 @default.
- W3173340191 cites W2012931001 @default.
- W3173340191 cites W2032254014 @default.
- W3173340191 cites W2035351162 @default.
- W3173340191 cites W2041706109 @default.
- W3173340191 cites W2043233537 @default.
- W3173340191 cites W2046206944 @default.
- W3173340191 cites W2046574518 @default.
- W3173340191 cites W2077203280 @default.
- W3173340191 cites W2077559791 @default.
- W3173340191 cites W2079158221 @default.
- W3173340191 cites W2084976957 @default.
- W3173340191 cites W2092497652 @default.
- W3173340191 cites W2095446662 @default.
- W3173340191 cites W2102391253 @default.
- W3173340191 cites W2104004753 @default.
- W3173340191 cites W2118811112 @default.
- W3173340191 cites W2120786099 @default.
- W3173340191 cites W2126255160 @default.
- W3173340191 cites W2127309075 @default.
- W3173340191 cites W2148828979 @default.
- W3173340191 cites W2150632270 @default.
- W3173340191 cites W2151765069 @default.
- W3173340191 cites W2165840723 @default.
- W3173340191 cites W2166305102 @default.
- W3173340191 cites W2167339403 @default.
- W3173340191 cites W2168463796 @default.
- W3173340191 cites W2198243321 @default.
- W3173340191 cites W2206024306 @default.
- W3173340191 cites W2522628945 @default.
- W3173340191 cites W2560584411 @default.
- W3173340191 cites W2607804943 @default.
- W3173340191 cites W2608502883 @default.
- W3173340191 cites W2610402968 @default.
- W3173340191 cites W2762416960 @default.
- W3173340191 cites W2791381072 @default.
- W3173340191 cites W2792229831 @default.
- W3173340191 cites W2804787479 @default.
- W3173340191 cites W2805191532 @default.
- W3173340191 cites W2887241590 @default.
- W3173340191 cites W2898209364 @default.
- W3173340191 cites W2898268106 @default.
- W3173340191 cites W2977883299 @default.
- W3173340191 cites W2995658973 @default.
- W3173340191 cites W3007946690 @default.
- W3173340191 cites W3029880661 @default.
- W3173340191 cites W3047684611 @default.
- W3173340191 cites W3148446709 @default.
- W3173340191 doi "https://doi.org/10.1101/2021.06.29.450089" @default.
- W3173340191 hasPublicationYear "2021" @default.
- W3173340191 type Work @default.
- W3173340191 sameAs 3173340191 @default.
- W3173340191 citedByCount "0" @default.
- W3173340191 crossrefType "posted-content" @default.
- W3173340191 hasAuthorship W3173340191A5005739211 @default.
- W3173340191 hasAuthorship W3173340191A5022956337 @default.
- W3173340191 hasAuthorship W3173340191A5038279757 @default.
- W3173340191 hasAuthorship W3173340191A5042212695 @default.
- W3173340191 hasAuthorship W3173340191A5043230316 @default.
- W3173340191 hasAuthorship W3173340191A5046384452 @default.
- W3173340191 hasAuthorship W3173340191A5065322925 @default.
- W3173340191 hasAuthorship W3173340191A5072978117 @default.
- W3173340191 hasAuthorship W3173340191A5087017337 @default.
- W3173340191 hasBestOaLocation W31733401911 @default.
- W3173340191 hasConcept C105795698 @default.
- W3173340191 hasConcept C126838900 @default.
- W3173340191 hasConcept C136229726 @default.
- W3173340191 hasConcept C143409427 @default.
- W3173340191 hasConcept C153180895 @default.
- W3173340191 hasConcept C154945302 @default.
- W3173340191 hasConcept C15744967 @default.
- W3173340191 hasConcept C162324750 @default.
- W3173340191 hasConcept C16345878 @default.
- W3173340191 hasConcept C169760540 @default.
- W3173340191 hasConcept C176217482 @default.
- W3173340191 hasConcept C19609008 @default.
- W3173340191 hasConcept C21547014 @default.
- W3173340191 hasConcept C2524010 @default.