Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173362625> ?p ?o ?g. }
- W3173362625 endingPage "109117" @default.
- W3173362625 startingPage "109117" @default.
- W3173362625 abstract "Surfactants and polymers are used in enhanced oil recovery (EOR) to reduce interfacial tension and increase the viscosity of displacing fluid, respectively. For oil-wet to mixed-wet systems, especially carbonates, which tend to be heavily fractured, wettability becomes a key parameter that strongly affects oil recovery. Therefore, studying the impact of surfactant and surfactant-polymer chemicals on carbonate wettability is important to understand the underlying mechanisms responsible for incremental oil recovery in surfactant-polymer flooding. In the present study, liberation kinetics of crude oil from carbonate surfaces were investigated by using a liberation cell at both ambient and elevated temperatures (70 °C). The liberation cell is equipped with an optical microscope for monitoring oil liberation. In addition, a custom-designed integrated thin film drainage apparatus (ITFDA) was used to measure adhesion forces between carbonate substrates and crude oil droplets. The chemical solutions were prepared in a representative high salinity brine. Two types of surfactants: a nonionic and an amphoteric were used and a sulfonated polyacrylamide polymer was selected. The chemical solutions were prepared at dilute concentrations of 1000 mg/L and 500 mg/L for the surfactant and polymer, respectively. Besides the main experimental data, i.e., adhesion forces and liberation kinetics, interfacial tensions and zeta potentials were also measured for different solutions. In the zeta potential tests, carbonate particle suspensions in brine, surfactant, polymer and surfactant-polymer solutions were used. Oil liberation from carbonate surface is the lowest with brine and the polymer increased the degree of oil liberation. The amphoteric surfactant showed better efficiency to liberate more crude oil from carbonate surface over the nonionic surfactant. Polymer and surfactant addition to brine resulted in an oil liberation degree that is much higher than those obtained by each of the chemicals when applied individually. For solutions containing brine, polymer, surfactant, and surfactant-polymer, oil liberation degree increased at elevated temperature. Adhesion forces were very consistent with the observed oil liberation results. Adhesion force was strongest in brine, and both the polymer and surfactants further lowered the adhesion force. Accordingly, the lower adhesion force between carbonate and crude oil in aqueous solutions containing surfactant and polymer contributed to the increased oil liberation. The higher oil liberation degree obtained with the amphoteric surfactant can be explained by its ability to lower oil/water interfacial tension by two to three orders of magnitude. In addition, the surface charges of carbonate particles were found to be increasingly negative in aqueous solutions containing surfactant and polymer, thereby contributing to enhanced wettability alteration in crude oil-brine-carbonate systems. These microscale results indicate that trapped-oil mobilization in carbonates is governed by both wettability and capillarity; in other words, wettability alteration as well as reduction in oil/water interfacial tension would lead to increased oil liberation. This experimental study has characterized, for the first time, surfactant, and surfactant-polymer effects on wettability and crude oil release from carbonate surface at microscale through adhesion force and dynamic oil liberation measurements. Such enhanced understanding obtained on the microscale interactions of surfactant, and surfactant-polymer chemicals at carbonate/brine/oil interfaces can provide some guidance on how to optimize EOR formulations for carbonate reservoirs. • Higher negative surface charge for carbonate particles in surfactant and surfactant-polymer solutions. • Two to three orders of magnitude reduction in interfacial tension with amphoteric surfactant. • Lowest adhesion forces for crude oil on carbonate surface in surfactant, and surfactant-polymer solutions. • Better efficacy of amphoteric surfactant over non-ionic surfactant to liberate crude oil from carbonate surface. • Trapped-oil mobilization in carbonates is governed by both wettability and capillarity." @default.
- W3173362625 created "2021-07-05" @default.
- W3173362625 creator A5000730708 @default.
- W3173362625 creator A5021889408 @default.
- W3173362625 creator A5031823975 @default.
- W3173362625 creator A5080188450 @default.
- W3173362625 date "2021-12-01" @default.
- W3173362625 modified "2023-10-12" @default.
- W3173362625 title "Surfactant and surfactant-polymer effects on wettability and crude oil liberation in carbonates" @default.
- W3173362625 cites W1175095701 @default.
- W3173362625 cites W1977222162 @default.
- W3173362625 cites W1981764732 @default.
- W3173362625 cites W1981968323 @default.
- W3173362625 cites W1994616350 @default.
- W3173362625 cites W1995105491 @default.
- W3173362625 cites W1998295821 @default.
- W3173362625 cites W2006511993 @default.
- W3173362625 cites W2007816917 @default.
- W3173362625 cites W2009851440 @default.
- W3173362625 cites W2018873405 @default.
- W3173362625 cites W2041092424 @default.
- W3173362625 cites W2044097314 @default.
- W3173362625 cites W2057038226 @default.
- W3173362625 cites W2058046601 @default.
- W3173362625 cites W2059279177 @default.
- W3173362625 cites W2059749644 @default.
- W3173362625 cites W2067916832 @default.
- W3173362625 cites W2073263494 @default.
- W3173362625 cites W2074910680 @default.
- W3173362625 cites W2077517698 @default.
- W3173362625 cites W2081021207 @default.
- W3173362625 cites W2082311217 @default.
- W3173362625 cites W2087531232 @default.
- W3173362625 cites W2094741547 @default.
- W3173362625 cites W2141027337 @default.
- W3173362625 cites W2328653804 @default.
- W3173362625 cites W2343853467 @default.
- W3173362625 cites W2409584111 @default.
- W3173362625 cites W2416978327 @default.
- W3173362625 cites W2543009903 @default.
- W3173362625 cites W2550825198 @default.
- W3173362625 cites W2567548033 @default.
- W3173362625 cites W2769783125 @default.
- W3173362625 cites W2771052179 @default.
- W3173362625 cites W2790145170 @default.
- W3173362625 cites W2888150608 @default.
- W3173362625 cites W2895557826 @default.
- W3173362625 cites W2903352882 @default.
- W3173362625 cites W2941691934 @default.
- W3173362625 cites W2945858774 @default.
- W3173362625 cites W3038693047 @default.
- W3173362625 cites W3039570671 @default.
- W3173362625 cites W3119177303 @default.
- W3173362625 cites W63294479 @default.
- W3173362625 doi "https://doi.org/10.1016/j.petrol.2021.109117" @default.
- W3173362625 hasPublicationYear "2021" @default.
- W3173362625 type Work @default.
- W3173362625 sameAs 3173362625 @default.
- W3173362625 citedByCount "14" @default.
- W3173362625 countsByYear W31733626252022 @default.
- W3173362625 countsByYear W31733626252023 @default.
- W3173362625 crossrefType "journal-article" @default.
- W3173362625 hasAuthorship W3173362625A5000730708 @default.
- W3173362625 hasAuthorship W3173362625A5021889408 @default.
- W3173362625 hasAuthorship W3173362625A5031823975 @default.
- W3173362625 hasAuthorship W3173362625A5080188450 @default.
- W3173362625 hasConcept C126348684 @default.
- W3173362625 hasConcept C127313418 @default.
- W3173362625 hasConcept C127413603 @default.
- W3173362625 hasConcept C134514944 @default.
- W3173362625 hasConcept C178790620 @default.
- W3173362625 hasConcept C185592680 @default.
- W3173362625 hasConcept C192562407 @default.
- W3173362625 hasConcept C202751555 @default.
- W3173362625 hasConcept C2776711897 @default.
- W3173362625 hasConcept C2779681308 @default.
- W3173362625 hasConcept C2987168347 @default.
- W3173362625 hasConcept C42360764 @default.
- W3173362625 hasConcept C521977710 @default.
- W3173362625 hasConcept C55493867 @default.
- W3173362625 hasConcept C58226133 @default.
- W3173362625 hasConcept C78762247 @default.
- W3173362625 hasConceptScore W3173362625C126348684 @default.
- W3173362625 hasConceptScore W3173362625C127313418 @default.
- W3173362625 hasConceptScore W3173362625C127413603 @default.
- W3173362625 hasConceptScore W3173362625C134514944 @default.
- W3173362625 hasConceptScore W3173362625C178790620 @default.
- W3173362625 hasConceptScore W3173362625C185592680 @default.
- W3173362625 hasConceptScore W3173362625C192562407 @default.
- W3173362625 hasConceptScore W3173362625C202751555 @default.
- W3173362625 hasConceptScore W3173362625C2776711897 @default.
- W3173362625 hasConceptScore W3173362625C2779681308 @default.
- W3173362625 hasConceptScore W3173362625C2987168347 @default.
- W3173362625 hasConceptScore W3173362625C42360764 @default.
- W3173362625 hasConceptScore W3173362625C521977710 @default.
- W3173362625 hasConceptScore W3173362625C55493867 @default.
- W3173362625 hasConceptScore W3173362625C58226133 @default.
- W3173362625 hasConceptScore W3173362625C78762247 @default.