Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173366510> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3173366510 endingPage "102860" @default.
- W3173366510 startingPage "102860" @default.
- W3173366510 abstract "Unlike the areas of building energy and structural health, performance monitoring tools are currently absent in the area of building fire protection. Computational Fluid Dynamics (CFD) models like Fire Dynamics Simulator (FDS) are widely applied in building fire performance design, which can be equally used to predict changes of building fire performance. However, due to its time-consuming nature, it is not realistic to apply FDS frequently. The sensitivity matrix method (SMM) has been discussed as a quick method to predict changes of building fire egress performance. However, this approach can have significant uncertainties when being applied to datasets with many input parameters due to its inherent incapability of predicting accurately system responses if input data are considerably far away from the baseline points around which a SMM is developed. Response surface methods (RSM) are commonly used to characterize the relationships between input variables and output quantities for complicated problems. Different from conventional RSMs, a novel two phase power function fitting process is proposed to develop substitute algebraic models of the available safe egress time (ASET) from FDS numerical experiments based on a theorem which states that an output variable is proportional to the product of input parameters to their respective powers if the output variable is proportional to each input parameter to some power and the input parameters are independent of each other. An artificial neural network (ANN) is a universal method to approximate any arbitrary complicated, nonlinear system response with limited number of discontinuities without deep understanding of how the system works. This paper employs MATLAB's feedforward neural networks with error backpropagating algorithm to approximate the FDS response. Applicability in terms of uncertainties including system bias and relative standard deviation (RSD) or percentage of predictions falling in a preset acceptable error range are compared among RSMs developed from various datasets, ANNs with various hidden layer sizes and dataset sizes, and SMMs which use the same fire scenarios in a small three-story apartment building. The result shows that it is possible for ANNs to have lowest model uncertainties and highest percentage of predictions within the preset 20% error scope as far as the specific fire egress safety problem discussed in this paper is concerned, but the cost of developing a SMM, namely the number of data cases, is the lowest. Due to the different aspects of RSMs, ANNs, and SMMs, to better understand the building fire performance gap continuously, a hybrid strategy of starting with SMMs followed by RSMs and/or ANNs is recommended in a fire performance monitoring tool. • A novel Response Surface Method is proposed based on two-phase power function fitting. • MATLAB's feedforward NN with error backpropagating algorithm is employed to approximate the FDS simulation results. • The applicability of Sensitivity Matrix Method, Response Surface Method, and Artificial Neural Network is compared. • A hybrid strategy of starting with SMM followed by RSM and/or ANN is recommended in a fire performance monitoring tool." @default.
- W3173366510 created "2021-07-05" @default.
- W3173366510 creator A5033756811 @default.
- W3173366510 creator A5040596913 @default.
- W3173366510 creator A5052737449 @default.
- W3173366510 creator A5085931197 @default.
- W3173366510 creator A5090416867 @default.
- W3173366510 date "2021-11-01" @default.
- W3173366510 modified "2023-09-26" @default.
- W3173366510 title "Comparison of sensitivity matrix method, power function-based response surface method, and artificial neural network in the analysis of building fire egress performance" @default.
- W3173366510 cites W2004838576 @default.
- W3173366510 cites W2012374811 @default.
- W3173366510 cites W2016809318 @default.
- W3173366510 cites W2042917546 @default.
- W3173366510 cites W2049297819 @default.
- W3173366510 cites W2063241545 @default.
- W3173366510 cites W2075376452 @default.
- W3173366510 cites W2129933242 @default.
- W3173366510 cites W2146082077 @default.
- W3173366510 cites W2164147875 @default.
- W3173366510 cites W2802499187 @default.
- W3173366510 cites W2970537232 @default.
- W3173366510 cites W3033438878 @default.
- W3173366510 cites W3099079911 @default.
- W3173366510 cites W3128350030 @default.
- W3173366510 cites W3152200292 @default.
- W3173366510 doi "https://doi.org/10.1016/j.jobe.2021.102860" @default.
- W3173366510 hasPublicationYear "2021" @default.
- W3173366510 type Work @default.
- W3173366510 sameAs 3173366510 @default.
- W3173366510 citedByCount "5" @default.
- W3173366510 countsByYear W31733665102022 @default.
- W3173366510 crossrefType "journal-article" @default.
- W3173366510 hasAuthorship W3173366510A5033756811 @default.
- W3173366510 hasAuthorship W3173366510A5040596913 @default.
- W3173366510 hasAuthorship W3173366510A5052737449 @default.
- W3173366510 hasAuthorship W3173366510A5085931197 @default.
- W3173366510 hasAuthorship W3173366510A5090416867 @default.
- W3173366510 hasConcept C106487976 @default.
- W3173366510 hasConcept C121332964 @default.
- W3173366510 hasConcept C127413603 @default.
- W3173366510 hasConcept C14036430 @default.
- W3173366510 hasConcept C154945302 @default.
- W3173366510 hasConcept C159985019 @default.
- W3173366510 hasConcept C163258240 @default.
- W3173366510 hasConcept C192562407 @default.
- W3173366510 hasConcept C21200559 @default.
- W3173366510 hasConcept C24326235 @default.
- W3173366510 hasConcept C2524010 @default.
- W3173366510 hasConcept C2776799497 @default.
- W3173366510 hasConcept C33923547 @default.
- W3173366510 hasConcept C41008148 @default.
- W3173366510 hasConcept C50644808 @default.
- W3173366510 hasConcept C62520636 @default.
- W3173366510 hasConcept C78458016 @default.
- W3173366510 hasConcept C86803240 @default.
- W3173366510 hasConceptScore W3173366510C106487976 @default.
- W3173366510 hasConceptScore W3173366510C121332964 @default.
- W3173366510 hasConceptScore W3173366510C127413603 @default.
- W3173366510 hasConceptScore W3173366510C14036430 @default.
- W3173366510 hasConceptScore W3173366510C154945302 @default.
- W3173366510 hasConceptScore W3173366510C159985019 @default.
- W3173366510 hasConceptScore W3173366510C163258240 @default.
- W3173366510 hasConceptScore W3173366510C192562407 @default.
- W3173366510 hasConceptScore W3173366510C21200559 @default.
- W3173366510 hasConceptScore W3173366510C24326235 @default.
- W3173366510 hasConceptScore W3173366510C2524010 @default.
- W3173366510 hasConceptScore W3173366510C2776799497 @default.
- W3173366510 hasConceptScore W3173366510C33923547 @default.
- W3173366510 hasConceptScore W3173366510C41008148 @default.
- W3173366510 hasConceptScore W3173366510C50644808 @default.
- W3173366510 hasConceptScore W3173366510C62520636 @default.
- W3173366510 hasConceptScore W3173366510C78458016 @default.
- W3173366510 hasConceptScore W3173366510C86803240 @default.
- W3173366510 hasLocation W31733665101 @default.
- W3173366510 hasOpenAccess W3173366510 @default.
- W3173366510 hasPrimaryLocation W31733665101 @default.
- W3173366510 hasRelatedWork W2159194419 @default.
- W3173366510 hasRelatedWork W2349816787 @default.
- W3173366510 hasRelatedWork W2349896076 @default.
- W3173366510 hasRelatedWork W2351911401 @default.
- W3173366510 hasRelatedWork W2354033094 @default.
- W3173366510 hasRelatedWork W2363342617 @default.
- W3173366510 hasRelatedWork W2386387936 @default.
- W3173366510 hasRelatedWork W2388564892 @default.
- W3173366510 hasRelatedWork W3026140520 @default.
- W3173366510 hasRelatedWork W2531588527 @default.
- W3173366510 hasVolume "43" @default.
- W3173366510 isParatext "false" @default.
- W3173366510 isRetracted "false" @default.
- W3173366510 magId "3173366510" @default.
- W3173366510 workType "article" @default.