Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173446879> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3173446879 endingPage "441" @default.
- W3173446879 startingPage "423" @default.
- W3173446879 abstract "Intrusion detection system [IDS] is a significant base for the network defence. A huge amount of data is generated with the latest technologies like cloud computing and social media networks. As the data generation keeps increasing, there are chances that different forms of intrusion attacks are also possible. This paper mainly focuses on the machine learning (ML) techniques for cyber security in support of intrusion detection. It uses three different algorithms, namely Naïve Bayes classifier, Hoeffding tree classifier and ensemble classifier. The study is performed on emerging methods and is compared with streaming and non-streaming environment. The discussion on using the emerging methods and challenges is presented in this paper with the well-known NSL_KDD datasets. The concept of drift is induced in the static stream by using the SEA generator. Finally, it is found that the ensemble classifier is more suitable for both the environments with and without concept drift.KeywordsIntrusion detectionCyber securityData miningMachine learningNaïve bayesHoeffding treeEnsemble classifier" @default.
- W3173446879 created "2021-07-05" @default.
- W3173446879 creator A5025472967 @default.
- W3173446879 creator A5034914166 @default.
- W3173446879 date "2021-01-01" @default.
- W3173446879 modified "2023-10-16" @default.
- W3173446879 title "Analysis on Intrusion Detection System Using Machine Learning Techniques" @default.
- W3173446879 cites W1498554058 @default.
- W3173446879 cites W2267339884 @default.
- W3173446879 cites W2281120889 @default.
- W3173446879 cites W2748012568 @default.
- W3173446879 cites W2762776925 @default.
- W3173446879 cites W2765773770 @default.
- W3173446879 cites W2783741806 @default.
- W3173446879 cites W2790117078 @default.
- W3173446879 cites W2790513427 @default.
- W3173446879 cites W2801183640 @default.
- W3173446879 cites W2807786182 @default.
- W3173446879 cites W2964861348 @default.
- W3173446879 doi "https://doi.org/10.1007/978-981-16-0965-7_34" @default.
- W3173446879 hasPublicationYear "2021" @default.
- W3173446879 type Work @default.
- W3173446879 sameAs 3173446879 @default.
- W3173446879 citedByCount "3" @default.
- W3173446879 countsByYear W31734468792022 @default.
- W3173446879 crossrefType "book-chapter" @default.
- W3173446879 hasAuthorship W3173446879A5025472967 @default.
- W3173446879 hasAuthorship W3173446879A5034914166 @default.
- W3173446879 hasConcept C111919701 @default.
- W3173446879 hasConcept C119857082 @default.
- W3173446879 hasConcept C12267149 @default.
- W3173446879 hasConcept C124101348 @default.
- W3173446879 hasConcept C127313418 @default.
- W3173446879 hasConcept C154945302 @default.
- W3173446879 hasConcept C158251709 @default.
- W3173446879 hasConcept C17409809 @default.
- W3173446879 hasConcept C182590292 @default.
- W3173446879 hasConcept C2778484313 @default.
- W3173446879 hasConcept C35525427 @default.
- W3173446879 hasConcept C38652104 @default.
- W3173446879 hasConcept C41008148 @default.
- W3173446879 hasConcept C45942800 @default.
- W3173446879 hasConcept C52001869 @default.
- W3173446879 hasConcept C60777511 @default.
- W3173446879 hasConcept C76155785 @default.
- W3173446879 hasConcept C79974875 @default.
- W3173446879 hasConcept C89198739 @default.
- W3173446879 hasConcept C95623464 @default.
- W3173446879 hasConceptScore W3173446879C111919701 @default.
- W3173446879 hasConceptScore W3173446879C119857082 @default.
- W3173446879 hasConceptScore W3173446879C12267149 @default.
- W3173446879 hasConceptScore W3173446879C124101348 @default.
- W3173446879 hasConceptScore W3173446879C127313418 @default.
- W3173446879 hasConceptScore W3173446879C154945302 @default.
- W3173446879 hasConceptScore W3173446879C158251709 @default.
- W3173446879 hasConceptScore W3173446879C17409809 @default.
- W3173446879 hasConceptScore W3173446879C182590292 @default.
- W3173446879 hasConceptScore W3173446879C2778484313 @default.
- W3173446879 hasConceptScore W3173446879C35525427 @default.
- W3173446879 hasConceptScore W3173446879C38652104 @default.
- W3173446879 hasConceptScore W3173446879C41008148 @default.
- W3173446879 hasConceptScore W3173446879C45942800 @default.
- W3173446879 hasConceptScore W3173446879C52001869 @default.
- W3173446879 hasConceptScore W3173446879C60777511 @default.
- W3173446879 hasConceptScore W3173446879C76155785 @default.
- W3173446879 hasConceptScore W3173446879C79974875 @default.
- W3173446879 hasConceptScore W3173446879C89198739 @default.
- W3173446879 hasConceptScore W3173446879C95623464 @default.
- W3173446879 hasLocation W31734468791 @default.
- W3173446879 hasOpenAccess W3173446879 @default.
- W3173446879 hasPrimaryLocation W31734468791 @default.
- W3173446879 hasRelatedWork W1506397997 @default.
- W3173446879 hasRelatedWork W2378676590 @default.
- W3173446879 hasRelatedWork W2393993762 @default.
- W3173446879 hasRelatedWork W2607131005 @default.
- W3173446879 hasRelatedWork W2613181115 @default.
- W3173446879 hasRelatedWork W2950306125 @default.
- W3173446879 hasRelatedWork W2964491809 @default.
- W3173446879 hasRelatedWork W3015645146 @default.
- W3173446879 hasRelatedWork W3173446879 @default.
- W3173446879 hasRelatedWork W4302789740 @default.
- W3173446879 isParatext "false" @default.
- W3173446879 isRetracted "false" @default.
- W3173446879 magId "3173446879" @default.
- W3173446879 workType "book-chapter" @default.