Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173522053> ?p ?o ?g. }
- W3173522053 endingPage "240" @default.
- W3173522053 startingPage "226" @default.
- W3173522053 abstract "Anaerobic co-digestion of waste activated sludge with wheat straw has been applied in this study. Four novel two-dimensional mathematical models (TDMMs) along with an artificial neural network (ANN) have been used to simulate and predict the biogas production via anaerobic co-digestion process. In addition, a proposed moth flame optimization (MFO) technique is used to identify the optimal structure of the proposed multilayer feedforward neural network (MFFNN) to predict the produced biogas, then, a comparison is conducted based on the results obtained from both TDMMs and ANN. The experimental results demonstrated that the co-digestion at 7% mixing ratio (straw to sludge based on weight) improved the C/N ratio to 35, and the highest yield of biogas (15-fold higher than sludge mono) was recorded, along with the largest reductions in the total solids (TS), volatile solids (TVS) and chemical oxygen demand (COD) with percentages of 58.06%, 66.55% and 74.67%, respectively. The four introduced TDMMs showed high correlation with the experimental data. Among them, the logistic kinetic model is considered the best one for the experimental data representation. However, the ANN results showed that the training, validation and testing of the MFFNN-MFO model yielded very high correlation coefficients in comparison with the other used models, demonstrating that it is the most useful tool for modeling the biogas production process. These findings can support decision-makers in the establishment of sustainable development strategies that utilize ecofriendly technologies for efficient power generation from biomass residues and in predicting the model behavior." @default.
- W3173522053 created "2021-07-05" @default.
- W3173522053 creator A5019296063 @default.
- W3173522053 creator A5028320939 @default.
- W3173522053 creator A5030431831 @default.
- W3173522053 creator A5063218261 @default.
- W3173522053 creator A5088118587 @default.
- W3173522053 date "2021-11-01" @default.
- W3173522053 modified "2023-10-02" @default.
- W3173522053 title "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network" @default.
- W3173522053 cites W1801217795 @default.
- W3173522053 cites W1856772967 @default.
- W3173522053 cites W1971435679 @default.
- W3173522053 cites W1973336138 @default.
- W3173522053 cites W1974744624 @default.
- W3173522053 cites W1984113687 @default.
- W3173522053 cites W1987739446 @default.
- W3173522053 cites W2003983879 @default.
- W3173522053 cites W2004915697 @default.
- W3173522053 cites W2005726600 @default.
- W3173522053 cites W2010498531 @default.
- W3173522053 cites W2019986525 @default.
- W3173522053 cites W2022309389 @default.
- W3173522053 cites W2038735393 @default.
- W3173522053 cites W2042956267 @default.
- W3173522053 cites W2050311017 @default.
- W3173522053 cites W2051089994 @default.
- W3173522053 cites W2054846840 @default.
- W3173522053 cites W2064894004 @default.
- W3173522053 cites W2072823483 @default.
- W3173522053 cites W2099230094 @default.
- W3173522053 cites W2112621676 @default.
- W3173522053 cites W2183945006 @default.
- W3173522053 cites W2266116632 @default.
- W3173522053 cites W2294163318 @default.
- W3173522053 cites W2338427865 @default.
- W3173522053 cites W2400931952 @default.
- W3173522053 cites W2411349399 @default.
- W3173522053 cites W2508496315 @default.
- W3173522053 cites W2525259562 @default.
- W3173522053 cites W2529005848 @default.
- W3173522053 cites W2561743940 @default.
- W3173522053 cites W2568796284 @default.
- W3173522053 cites W2601424490 @default.
- W3173522053 cites W2604624354 @default.
- W3173522053 cites W2613771876 @default.
- W3173522053 cites W2727127822 @default.
- W3173522053 cites W2752532721 @default.
- W3173522053 cites W2791647380 @default.
- W3173522053 cites W2809457979 @default.
- W3173522053 cites W2905941926 @default.
- W3173522053 cites W2955735056 @default.
- W3173522053 cites W2965580342 @default.
- W3173522053 cites W2997706625 @default.
- W3173522053 cites W3023777230 @default.
- W3173522053 cites W3088631887 @default.
- W3173522053 cites W883434633 @default.
- W3173522053 doi "https://doi.org/10.1016/j.renene.2021.06.050" @default.
- W3173522053 hasPublicationYear "2021" @default.
- W3173522053 type Work @default.
- W3173522053 sameAs 3173522053 @default.
- W3173522053 citedByCount "16" @default.
- W3173522053 countsByYear W31735220532021 @default.
- W3173522053 countsByYear W31735220532022 @default.
- W3173522053 countsByYear W31735220532023 @default.
- W3173522053 crossrefType "journal-article" @default.
- W3173522053 hasAuthorship W3173522053A5019296063 @default.
- W3173522053 hasAuthorship W3173522053A5028320939 @default.
- W3173522053 hasAuthorship W3173522053A5030431831 @default.
- W3173522053 hasAuthorship W3173522053A5063218261 @default.
- W3173522053 hasAuthorship W3173522053A5088118587 @default.
- W3173522053 hasConcept C105795698 @default.
- W3173522053 hasConcept C115540264 @default.
- W3173522053 hasConcept C119857082 @default.
- W3173522053 hasConcept C127413603 @default.
- W3173522053 hasConcept C129360787 @default.
- W3173522053 hasConcept C156380964 @default.
- W3173522053 hasConcept C178790620 @default.
- W3173522053 hasConcept C185592680 @default.
- W3173522053 hasConcept C188287460 @default.
- W3173522053 hasConcept C21880701 @default.
- W3173522053 hasConcept C2779587293 @default.
- W3173522053 hasConcept C2994333036 @default.
- W3173522053 hasConcept C33923547 @default.
- W3173522053 hasConcept C39432304 @default.
- W3173522053 hasConcept C41008148 @default.
- W3173522053 hasConcept C45804977 @default.
- W3173522053 hasConcept C499616599 @default.
- W3173522053 hasConcept C50644808 @default.
- W3173522053 hasConcept C516920438 @default.
- W3173522053 hasConcept C528095902 @default.
- W3173522053 hasConcept C53991642 @default.
- W3173522053 hasConcept C548081761 @default.
- W3173522053 hasConcept C6557445 @default.
- W3173522053 hasConcept C75212476 @default.
- W3173522053 hasConcept C86803240 @default.
- W3173522053 hasConcept C87717796 @default.
- W3173522053 hasConcept C94061648 @default.