Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173522221> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3173522221 abstract "Background: Uncontrolled chronic rhinosinusitis (CRS) needing consideration of surgery is a growing health problem yet its risk factors at individual level are not known. Our aim was to examine risk factors of revision endoscopic sinus surgery (ESS) at the individual level by using artificial intelligence. Methods: Demographic and visit variables were collected from electronic health records (EHR) of 790 operated CRS patients. The effect of variables on the prediction accuracy of revision ESS was examined at the individual level via machine learning models. Results: Revision ESS was performed to 114 (14.7%) CRS patients. The logistic regression, gradient boosting and random forest classifiers had similar performance (AUC values .746, .745 and .747, respectively) for predicting revision ESS. The best performance was yielded by using logistic regression and long predictor data retrieval time (AUC .809, precision 36%, sensitivity 70%) as compared with data collection time from baseline visit until 0, 3 and 6 months after the baseline ESS (AUC values .668, .717 and .746, respectively). The number of visits, number of days from the baseline visit to the baseline ESS, age, CRS with nasal polyps (CRSwNP), asthma, NERD and immunodeficiency or its suspicion were associated with revision ESS. Age and the number of visits before baseline ESS had non-linear effects for the predictions. Conclusions: Intelligent data analysis found important predictors of revision ESS at the individual level, such as visit frequency, age, Type 2 high diseases and immunodeficiency or its suspicion." @default.
- W3173522221 created "2021-07-05" @default.
- W3173522221 creator A5022412636 @default.
- W3173522221 creator A5036821582 @default.
- W3173522221 creator A5045944519 @default.
- W3173522221 creator A5078176288 @default.
- W3173522221 creator A5088096457 @default.
- W3173522221 date "2021-06-24" @default.
- W3173522221 modified "2023-09-27" @default.
- W3173522221 title "Using machine learning for personalized prediction of revision paranasal sinus surgery" @default.
- W3173522221 doi "https://doi.org/10.22541/au.162456807.76794077/v1" @default.
- W3173522221 hasPublicationYear "2021" @default.
- W3173522221 type Work @default.
- W3173522221 sameAs 3173522221 @default.
- W3173522221 citedByCount "0" @default.
- W3173522221 crossrefType "posted-content" @default.
- W3173522221 hasAuthorship W3173522221A5022412636 @default.
- W3173522221 hasAuthorship W3173522221A5036821582 @default.
- W3173522221 hasAuthorship W3173522221A5045944519 @default.
- W3173522221 hasAuthorship W3173522221A5078176288 @default.
- W3173522221 hasAuthorship W3173522221A5088096457 @default.
- W3173522221 hasBestOaLocation W31735222211 @default.
- W3173522221 hasConcept C111368507 @default.
- W3173522221 hasConcept C119857082 @default.
- W3173522221 hasConcept C126322002 @default.
- W3173522221 hasConcept C12725497 @default.
- W3173522221 hasConcept C127313418 @default.
- W3173522221 hasConcept C141071460 @default.
- W3173522221 hasConcept C151956035 @default.
- W3173522221 hasConcept C169258074 @default.
- W3173522221 hasConcept C2993524501 @default.
- W3173522221 hasConcept C41008148 @default.
- W3173522221 hasConcept C70153297 @default.
- W3173522221 hasConcept C71924100 @default.
- W3173522221 hasConceptScore W3173522221C111368507 @default.
- W3173522221 hasConceptScore W3173522221C119857082 @default.
- W3173522221 hasConceptScore W3173522221C126322002 @default.
- W3173522221 hasConceptScore W3173522221C12725497 @default.
- W3173522221 hasConceptScore W3173522221C127313418 @default.
- W3173522221 hasConceptScore W3173522221C141071460 @default.
- W3173522221 hasConceptScore W3173522221C151956035 @default.
- W3173522221 hasConceptScore W3173522221C169258074 @default.
- W3173522221 hasConceptScore W3173522221C2993524501 @default.
- W3173522221 hasConceptScore W3173522221C41008148 @default.
- W3173522221 hasConceptScore W3173522221C70153297 @default.
- W3173522221 hasConceptScore W3173522221C71924100 @default.
- W3173522221 hasLocation W31735222211 @default.
- W3173522221 hasOpenAccess W3173522221 @default.
- W3173522221 hasPrimaryLocation W31735222211 @default.
- W3173522221 hasRelatedWork W2605253636 @default.
- W3173522221 hasRelatedWork W2899909823 @default.
- W3173522221 hasRelatedWork W3091281797 @default.
- W3173522221 hasRelatedWork W3133759402 @default.
- W3173522221 hasRelatedWork W3212353841 @default.
- W3173522221 hasRelatedWork W4206201631 @default.
- W3173522221 hasRelatedWork W4229443789 @default.
- W3173522221 hasRelatedWork W4295102877 @default.
- W3173522221 hasRelatedWork W4321500041 @default.
- W3173522221 hasRelatedWork W4361269202 @default.
- W3173522221 isParatext "false" @default.
- W3173522221 isRetracted "false" @default.
- W3173522221 magId "3173522221" @default.
- W3173522221 workType "article" @default.