Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173670101> ?p ?o ?g. }
- W3173670101 endingPage "108148" @default.
- W3173670101 startingPage "108148" @default.
- W3173670101 abstract "This paper presents the development of a robust automatic damage diagnosis technique that uses ultrasonic Lamb waves and a deep autoencoder (DAE) to detect and classify fatigue damage in composite structures. Piezoelectric (PZT) transducers are installed on carbon fiber reinforced polymer (CFRP) composite plate specimens to interrogate structural integrity under uniaxial fatigue loading. Fatigue damage evolution from matrix cracking to delamination is monitored by periodically acquiring the ultrasonic wave response. A deep autoencoder (DAE) model is adopted for effective tracking of ultrasonic response variations and for diagnosing fatigue damage in the composite specimens. The ultrasonic signals collected from pristine specimens are processed and used for training the DAE model. To improve the accuracy and sensitivity of the damage diagnosis, the architecture and hyperparameters of the DAE model are optimized, and a statistical detection baseline is defined to capture damage indicators. The ultrasonic signals obtained after applying additional fatigue cycles are introduced into the trained DAE model to validate the damage detection and classification capabilities. The damage sensitive features automatically extracted from the bottleneck layer of the DAE model are used to classify the fatigue damage mode. Singular value decomposition (SVD) is used to further reduce feature dimensionality. The patterns in the reduced features are then analyzed using a density-based spatial clustering of applications with noise (DBSCAN) algorithm. The results show that the proposed technique can accurately detect and classify the fatigue damage in composite structures, while removing the need for manual or signal processing-based damage sensitive feature extraction from ultrasonic signals for damage diagnosis." @default.
- W3173670101 created "2021-07-05" @default.
- W3173670101 creator A5000182063 @default.
- W3173670101 creator A5011210207 @default.
- W3173670101 creator A5038227055 @default.
- W3173670101 creator A5082241757 @default.
- W3173670101 creator A5082700651 @default.
- W3173670101 date "2022-01-01" @default.
- W3173670101 modified "2023-10-14" @default.
- W3173670101 title "Automated fatigue damage detection and classification technique for composite structures using Lamb waves and deep autoencoder" @default.
- W3173670101 cites W1964666822 @default.
- W3173670101 cites W1974684128 @default.
- W3173670101 cites W1977160983 @default.
- W3173670101 cites W1978847253 @default.
- W3173670101 cites W1985238530 @default.
- W3173670101 cites W1989880248 @default.
- W3173670101 cites W1993647824 @default.
- W3173670101 cites W2039854747 @default.
- W3173670101 cites W2045803605 @default.
- W3173670101 cites W2049868524 @default.
- W3173670101 cites W2067379510 @default.
- W3173670101 cites W2103265710 @default.
- W3173670101 cites W2126678359 @default.
- W3173670101 cites W2155008866 @default.
- W3173670101 cites W2219715551 @default.
- W3173670101 cites W2325430201 @default.
- W3173670101 cites W2551029876 @default.
- W3173670101 cites W2575704351 @default.
- W3173670101 cites W2613991208 @default.
- W3173670101 cites W2740924709 @default.
- W3173670101 cites W2767028568 @default.
- W3173670101 cites W2794232191 @default.
- W3173670101 cites W2799967010 @default.
- W3173670101 cites W2802771769 @default.
- W3173670101 cites W2906419363 @default.
- W3173670101 cites W2944411166 @default.
- W3173670101 cites W2946859112 @default.
- W3173670101 cites W3009613264 @default.
- W3173670101 cites W3020789896 @default.
- W3173670101 cites W3044005235 @default.
- W3173670101 cites W3082596323 @default.
- W3173670101 cites W3116908584 @default.
- W3173670101 cites W3158281165 @default.
- W3173670101 doi "https://doi.org/10.1016/j.ymssp.2021.108148" @default.
- W3173670101 hasPublicationYear "2022" @default.
- W3173670101 type Work @default.
- W3173670101 sameAs 3173670101 @default.
- W3173670101 citedByCount "36" @default.
- W3173670101 countsByYear W31736701012021 @default.
- W3173670101 countsByYear W31736701012022 @default.
- W3173670101 countsByYear W31736701012023 @default.
- W3173670101 crossrefType "journal-article" @default.
- W3173670101 hasAuthorship W3173670101A5000182063 @default.
- W3173670101 hasAuthorship W3173670101A5011210207 @default.
- W3173670101 hasAuthorship W3173670101A5038227055 @default.
- W3173670101 hasAuthorship W3173670101A5082241757 @default.
- W3173670101 hasAuthorship W3173670101A5082700651 @default.
- W3173670101 hasConcept C101738243 @default.
- W3173670101 hasConcept C108583219 @default.
- W3173670101 hasConcept C121332964 @default.
- W3173670101 hasConcept C127413603 @default.
- W3173670101 hasConcept C142358356 @default.
- W3173670101 hasConcept C151730666 @default.
- W3173670101 hasConcept C153180895 @default.
- W3173670101 hasConcept C154945302 @default.
- W3173670101 hasConcept C192562407 @default.
- W3173670101 hasConcept C24890656 @default.
- W3173670101 hasConcept C2776247918 @default.
- W3173670101 hasConcept C30239060 @default.
- W3173670101 hasConcept C41008148 @default.
- W3173670101 hasConcept C52622490 @default.
- W3173670101 hasConcept C58097730 @default.
- W3173670101 hasConcept C66938386 @default.
- W3173670101 hasConcept C76155785 @default.
- W3173670101 hasConcept C77928131 @default.
- W3173670101 hasConcept C81288441 @default.
- W3173670101 hasConcept C84174578 @default.
- W3173670101 hasConcept C86803240 @default.
- W3173670101 hasConceptScore W3173670101C101738243 @default.
- W3173670101 hasConceptScore W3173670101C108583219 @default.
- W3173670101 hasConceptScore W3173670101C121332964 @default.
- W3173670101 hasConceptScore W3173670101C127413603 @default.
- W3173670101 hasConceptScore W3173670101C142358356 @default.
- W3173670101 hasConceptScore W3173670101C151730666 @default.
- W3173670101 hasConceptScore W3173670101C153180895 @default.
- W3173670101 hasConceptScore W3173670101C154945302 @default.
- W3173670101 hasConceptScore W3173670101C192562407 @default.
- W3173670101 hasConceptScore W3173670101C24890656 @default.
- W3173670101 hasConceptScore W3173670101C2776247918 @default.
- W3173670101 hasConceptScore W3173670101C30239060 @default.
- W3173670101 hasConceptScore W3173670101C41008148 @default.
- W3173670101 hasConceptScore W3173670101C52622490 @default.
- W3173670101 hasConceptScore W3173670101C58097730 @default.
- W3173670101 hasConceptScore W3173670101C66938386 @default.
- W3173670101 hasConceptScore W3173670101C76155785 @default.
- W3173670101 hasConceptScore W3173670101C77928131 @default.
- W3173670101 hasConceptScore W3173670101C81288441 @default.
- W3173670101 hasConceptScore W3173670101C84174578 @default.