Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173726614> ?p ?o ?g. }
- W3173726614 abstract "In this paper, we introduce both a Multi-Label Classification (MLC) method to determine all the emotions expressed in an Arabic tweet and a Multi-Target Regression (MTR) method to determine the emotions' intensities. MLC involves the prediction of zero or more classes per sample. It is one of the interesting research topics in Natural Language Processing (NLP), especially for the Arabic language due to scarcity of works related to it. MTR is a harder task compared to MLC, but it lends itself as a suitable representation for Emotion Analysis (EA), which is gaining more interest due to the increasing use of social media and the wide range of applications related to it. This work introduces a new study on the use of Deep Learning (DL) techniques for emotions classification and quantification in Arabic tweets." @default.
- W3173726614 created "2021-07-05" @default.
- W3173726614 creator A5006391076 @default.
- W3173726614 creator A5007405634 @default.
- W3173726614 creator A5008701336 @default.
- W3173726614 creator A5073474306 @default.
- W3173726614 date "2021-05-24" @default.
- W3173726614 modified "2023-10-05" @default.
- W3173726614 title "A Deep Learning Approach to Classify and Quantify the Multiple Emotions of Arabic Tweets" @default.
- W3173726614 cites W1505029451 @default.
- W3173726614 cites W1969524700 @default.
- W3173726614 cites W1999954155 @default.
- W3173726614 cites W2040467972 @default.
- W3173726614 cites W2146241755 @default.
- W3173726614 cites W2209124566 @default.
- W3173726614 cites W2508658503 @default.
- W3173726614 cites W2515404780 @default.
- W3173726614 cites W2544764415 @default.
- W3173726614 cites W2750954734 @default.
- W3173726614 cites W2770568736 @default.
- W3173726614 cites W2790391157 @default.
- W3173726614 cites W2796772616 @default.
- W3173726614 cites W2802808432 @default.
- W3173726614 cites W2803193013 @default.
- W3173726614 cites W2805744755 @default.
- W3173726614 cites W2806631561 @default.
- W3173726614 cites W2900517206 @default.
- W3173726614 cites W2907337265 @default.
- W3173726614 cites W2944780533 @default.
- W3173726614 cites W2945608075 @default.
- W3173726614 cites W2971238384 @default.
- W3173726614 cites W2995392485 @default.
- W3173726614 cites W2997613748 @default.
- W3173726614 cites W3003882321 @default.
- W3173726614 cites W3009902384 @default.
- W3173726614 cites W3012040005 @default.
- W3173726614 cites W3027457715 @default.
- W3173726614 cites W3116641301 @default.
- W3173726614 cites W3130015284 @default.
- W3173726614 cites W3176044494 @default.
- W3173726614 doi "https://doi.org/10.1109/icics52457.2021.9464548" @default.
- W3173726614 hasPublicationYear "2021" @default.
- W3173726614 type Work @default.
- W3173726614 sameAs 3173726614 @default.
- W3173726614 citedByCount "3" @default.
- W3173726614 countsByYear W31737266142021 @default.
- W3173726614 countsByYear W31737266142023 @default.
- W3173726614 crossrefType "proceedings-article" @default.
- W3173726614 hasAuthorship W3173726614A5006391076 @default.
- W3173726614 hasAuthorship W3173726614A5007405634 @default.
- W3173726614 hasAuthorship W3173726614A5008701336 @default.
- W3173726614 hasAuthorship W3173726614A5073474306 @default.
- W3173726614 hasConcept C109747225 @default.
- W3173726614 hasConcept C136764020 @default.
- W3173726614 hasConcept C138885662 @default.
- W3173726614 hasConcept C154945302 @default.
- W3173726614 hasConcept C159985019 @default.
- W3173726614 hasConcept C162324750 @default.
- W3173726614 hasConcept C175444787 @default.
- W3173726614 hasConcept C17744445 @default.
- W3173726614 hasConcept C187736073 @default.
- W3173726614 hasConcept C192562407 @default.
- W3173726614 hasConcept C199539241 @default.
- W3173726614 hasConcept C204321447 @default.
- W3173726614 hasConcept C204323151 @default.
- W3173726614 hasConcept C2776359362 @default.
- W3173726614 hasConcept C2780451532 @default.
- W3173726614 hasConcept C41008148 @default.
- W3173726614 hasConcept C41895202 @default.
- W3173726614 hasConcept C518677369 @default.
- W3173726614 hasConcept C66402592 @default.
- W3173726614 hasConcept C94625758 @default.
- W3173726614 hasConcept C96455323 @default.
- W3173726614 hasConceptScore W3173726614C109747225 @default.
- W3173726614 hasConceptScore W3173726614C136764020 @default.
- W3173726614 hasConceptScore W3173726614C138885662 @default.
- W3173726614 hasConceptScore W3173726614C154945302 @default.
- W3173726614 hasConceptScore W3173726614C159985019 @default.
- W3173726614 hasConceptScore W3173726614C162324750 @default.
- W3173726614 hasConceptScore W3173726614C175444787 @default.
- W3173726614 hasConceptScore W3173726614C17744445 @default.
- W3173726614 hasConceptScore W3173726614C187736073 @default.
- W3173726614 hasConceptScore W3173726614C192562407 @default.
- W3173726614 hasConceptScore W3173726614C199539241 @default.
- W3173726614 hasConceptScore W3173726614C204321447 @default.
- W3173726614 hasConceptScore W3173726614C204323151 @default.
- W3173726614 hasConceptScore W3173726614C2776359362 @default.
- W3173726614 hasConceptScore W3173726614C2780451532 @default.
- W3173726614 hasConceptScore W3173726614C41008148 @default.
- W3173726614 hasConceptScore W3173726614C41895202 @default.
- W3173726614 hasConceptScore W3173726614C518677369 @default.
- W3173726614 hasConceptScore W3173726614C66402592 @default.
- W3173726614 hasConceptScore W3173726614C94625758 @default.
- W3173726614 hasConceptScore W3173726614C96455323 @default.
- W3173726614 hasLocation W31737266141 @default.
- W3173726614 hasOpenAccess W3173726614 @default.
- W3173726614 hasPrimaryLocation W31737266141 @default.
- W3173726614 hasRelatedWork W2024691726 @default.
- W3173726614 hasRelatedWork W2057854333 @default.
- W3173726614 hasRelatedWork W2166245164 @default.