Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173873716> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W3173873716 endingPage "268" @default.
- W3173873716 startingPage "257" @default.
- W3173873716 abstract "Roadways are one of the major types of transportation in India and with its highly significant impact on the Indian economy it cannot be avoided. With roadways there comes a concern of road safety and a high number of accidents. Many people lose their lives in road accidents for various reasons. The percentage of accidents is increasing to such a high level in India, causing loss of human life, because of a lack of proper real-time tracking of accident which could be passed to a nearby police station or hospital. This paper aims to provide a solution to this problem by providing information on the accident spot, which can be immediately be shared with a local police station or hospital with few necessary pieces of information such as photos, location, and video. The belief is that this increase in information will lead to the saving of human lives and a decrease in suffering. The idea behind the Sanjeevni mangemen system is that the device consists of hardware that detects whether or ot an accident took place and if it did would then send information such as location of the accident site via a fully automated system. Hence, this system has the ability to be a great contribution to society by saving lifes with the help of Big Data technology like spark streaming, Hadoop, etc." @default.
- W3173873716 created "2021-07-05" @default.
- W3173873716 creator A5013772028 @default.
- W3173873716 creator A5035259012 @default.
- W3173873716 creator A5038279470 @default.
- W3173873716 creator A5060714797 @default.
- W3173873716 creator A5065934463 @default.
- W3173873716 creator A5068031694 @default.
- W3173873716 date "2021-06-18" @default.
- W3173873716 modified "2023-09-24" @default.
- W3173873716 title "Sanjeevni—we care for life: Using big data-apache spark" @default.
- W3173873716 doi "https://doi.org/10.1201/9781003167488-31" @default.
- W3173873716 hasPublicationYear "2021" @default.
- W3173873716 type Work @default.
- W3173873716 sameAs 3173873716 @default.
- W3173873716 citedByCount "0" @default.
- W3173873716 crossrefType "book-chapter" @default.
- W3173873716 hasAuthorship W3173873716A5013772028 @default.
- W3173873716 hasAuthorship W3173873716A5035259012 @default.
- W3173873716 hasAuthorship W3173873716A5038279470 @default.
- W3173873716 hasAuthorship W3173873716A5060714797 @default.
- W3173873716 hasAuthorship W3173873716A5065934463 @default.
- W3173873716 hasAuthorship W3173873716A5068031694 @default.
- W3173873716 hasConcept C111919701 @default.
- W3173873716 hasConcept C199360897 @default.
- W3173873716 hasConcept C2781215313 @default.
- W3173873716 hasConcept C41008148 @default.
- W3173873716 hasConcept C75684735 @default.
- W3173873716 hasConceptScore W3173873716C111919701 @default.
- W3173873716 hasConceptScore W3173873716C199360897 @default.
- W3173873716 hasConceptScore W3173873716C2781215313 @default.
- W3173873716 hasConceptScore W3173873716C41008148 @default.
- W3173873716 hasConceptScore W3173873716C75684735 @default.
- W3173873716 hasLocation W31738737161 @default.
- W3173873716 hasOpenAccess W3173873716 @default.
- W3173873716 hasPrimaryLocation W31738737161 @default.
- W3173873716 hasRelatedWork W2204201938 @default.
- W3173873716 hasRelatedWork W2616918402 @default.
- W3173873716 hasRelatedWork W2966692110 @default.
- W3173873716 hasRelatedWork W3006311829 @default.
- W3173873716 hasRelatedWork W3007547586 @default.
- W3173873716 hasRelatedWork W3012903882 @default.
- W3173873716 hasRelatedWork W3109411864 @default.
- W3173873716 hasRelatedWork W3154228395 @default.
- W3173873716 hasRelatedWork W3202731209 @default.
- W3173873716 hasRelatedWork W4247566972 @default.
- W3173873716 isParatext "false" @default.
- W3173873716 isRetracted "false" @default.
- W3173873716 magId "3173873716" @default.
- W3173873716 workType "book-chapter" @default.