Matches in SemOpenAlex for { <https://semopenalex.org/work/W3173993896> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3173993896 abstract "We prove that all Galerkin truncations of the 2d stochastic Navier-Stokes equations in vorticity form on any rectangular torus subjected to hypoelliptic, additive stochastic forcing are chaotic at sufficiently small viscosity, provided the frequency truncation satisfies $Ngeq 392$. By chaotic we mean having a strictly positive Lyapunov exponent, i.e. almost-sure asymptotic exponential growth of the derivative with respect to generic initial conditions. A sufficient condition for such results was derived in previous joint work with Alex Blumenthal which reduces the question to the non-degeneracy of a matrix Lie algebra implying Hormander's condition for the Markov process lifted to the sphere bundle (projective hypoellipticity). The purpose of this work is to reformulate this condition to be more amenable for Galerkin truncations of PDEs and then to verify this condition using a) a reduction to genericity properties of a diagonal sub-algebra inspired by the root space decomposition of semi-simple Lie algebras and b) computational algebraic geometry executed by Maple in exact rational arithmetic. Note that even though we use a computer assisted proof, the result is valid for all aspect ratios and all sufficiently high dimensional truncations; in fact, certain steps simplify in the formal infinite dimensional limit." @default.
- W3173993896 created "2021-07-05" @default.
- W3173993896 creator A5053962914 @default.
- W3173993896 creator A5081815930 @default.
- W3173993896 date "2021-06-25" @default.
- W3173993896 modified "2023-09-23" @default.
- W3173993896 title "Chaos in stochastic 2d Galerkin-Navier-Stokes" @default.
- W3173993896 cites W101236918 @default.
- W3173993896 cites W1500233097 @default.
- W3173993896 cites W1518341038 @default.
- W3173993896 cites W1540059687 @default.
- W3173993896 cites W1576347883 @default.
- W3173993896 cites W1587348082 @default.
- W3173993896 cites W1623280345 @default.
- W3173993896 cites W1633846295 @default.
- W3173993896 cites W1802196594 @default.
- W3173993896 cites W1966780936 @default.
- W3173993896 cites W1968147538 @default.
- W3173993896 cites W1971064885 @default.
- W3173993896 cites W1974835618 @default.
- W3173993896 cites W1978341653 @default.
- W3173993896 cites W1985099948 @default.
- W3173993896 cites W1986821947 @default.
- W3173993896 cites W1988543600 @default.
- W3173993896 cites W1988602350 @default.
- W3173993896 cites W2015263140 @default.
- W3173993896 cites W2021268474 @default.
- W3173993896 cites W2022221320 @default.
- W3173993896 cites W2024610012 @default.
- W3173993896 cites W2026198779 @default.
- W3173993896 cites W2028886195 @default.
- W3173993896 cites W2036793545 @default.
- W3173993896 cites W2061738100 @default.
- W3173993896 cites W2073530198 @default.
- W3173993896 cites W2073587602 @default.
- W3173993896 cites W2074693497 @default.
- W3173993896 cites W2087583851 @default.
- W3173993896 cites W2097293438 @default.
- W3173993896 cites W2104532799 @default.
- W3173993896 cites W2105146991 @default.
- W3173993896 cites W2128687423 @default.
- W3173993896 cites W2144762236 @default.
- W3173993896 cites W2147311417 @default.
- W3173993896 cites W2161358768 @default.
- W3173993896 cites W2164454345 @default.
- W3173993896 cites W2166477576 @default.
- W3173993896 cites W2314913127 @default.
- W3173993896 cites W2491160177 @default.
- W3173993896 cites W2519188913 @default.
- W3173993896 cites W2746032625 @default.
- W3173993896 cites W3044971865 @default.
- W3173993896 cites W304550634 @default.
- W3173993896 cites W3046875213 @default.
- W3173993896 cites W32181719 @default.
- W3173993896 cites W561123807 @default.
- W3173993896 cites W576471216 @default.
- W3173993896 cites W91288600 @default.
- W3173993896 cites W934731074 @default.
- W3173993896 doi "https://doi.org/10.48550/arxiv.2106.13748" @default.
- W3173993896 hasPublicationYear "2021" @default.
- W3173993896 type Work @default.
- W3173993896 sameAs 3173993896 @default.
- W3173993896 citedByCount "1" @default.
- W3173993896 countsByYear W31739938962021 @default.
- W3173993896 crossrefType "posted-content" @default.
- W3173993896 hasAuthorship W3173993896A5053962914 @default.
- W3173993896 hasAuthorship W3173993896A5081815930 @default.
- W3173993896 hasBestOaLocation W31739938961 @default.
- W3173993896 hasConcept C122044880 @default.
- W3173993896 hasConcept C134306372 @default.
- W3173993896 hasConcept C202444582 @default.
- W3173993896 hasConcept C33923547 @default.
- W3173993896 hasConceptScore W3173993896C122044880 @default.
- W3173993896 hasConceptScore W3173993896C134306372 @default.
- W3173993896 hasConceptScore W3173993896C202444582 @default.
- W3173993896 hasConceptScore W3173993896C33923547 @default.
- W3173993896 hasLocation W31739938961 @default.
- W3173993896 hasOpenAccess W3173993896 @default.
- W3173993896 hasPrimaryLocation W31739938961 @default.
- W3173993896 hasRelatedWork W1543732704 @default.
- W3173993896 hasRelatedWork W1606423697 @default.
- W3173993896 hasRelatedWork W2027619911 @default.
- W3173993896 hasRelatedWork W2079981754 @default.
- W3173993896 hasRelatedWork W2084376868 @default.
- W3173993896 hasRelatedWork W2094532370 @default.
- W3173993896 hasRelatedWork W2963299114 @default.
- W3173993896 hasRelatedWork W4248378470 @default.
- W3173993896 hasRelatedWork W4249099142 @default.
- W3173993896 hasRelatedWork W2322365632 @default.
- W3173993896 isParatext "false" @default.
- W3173993896 isRetracted "false" @default.
- W3173993896 magId "3173993896" @default.
- W3173993896 workType "article" @default.