Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174049649> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3174049649 endingPage "498" @default.
- W3174049649 startingPage "487" @default.
- W3174049649 abstract "Plants are the most important for the living of human beings as well as for our environment. Agriculture plays an important role in the economy of our country, so it becomes important to save the plants from diseases. It is necessary to detect the diseases in an earlier stage to save the plants, which is one of the most difficult things so, In order to detect or identify the diseases in the plants there are some traditional methods which are done by manually becomes very difficult and they require lots amount of time, expertise in plant diseases and has excessive processing time. Nowadays machine learning and deep learning is used widely for this purpose with the help of images. So this paper, perform a survey on the various deep learning techniques or models for the identification of plants diseases.KeywordsDiseasesDeep learningTechniqueImage processingMachine learning" @default.
- W3174049649 created "2021-07-05" @default.
- W3174049649 creator A5003949731 @default.
- W3174049649 creator A5027237707 @default.
- W3174049649 creator A5037577894 @default.
- W3174049649 creator A5078799468 @default.
- W3174049649 date "2021-01-01" @default.
- W3174049649 modified "2023-09-24" @default.
- W3174049649 title "A Review on Various Deep Learning Techniques for Identification of Plant Diseases" @default.
- W3174049649 cites W2289529415 @default.
- W3174049649 cites W2758893285 @default.
- W3174049649 cites W2786744169 @default.
- W3174049649 cites W2789255992 @default.
- W3174049649 cites W2790979755 @default.
- W3174049649 cites W2795016359 @default.
- W3174049649 cites W2808709127 @default.
- W3174049649 cites W2811094823 @default.
- W3174049649 cites W2884416373 @default.
- W3174049649 cites W2886590014 @default.
- W3174049649 cites W2897577546 @default.
- W3174049649 cites W2907194960 @default.
- W3174049649 cites W2911433502 @default.
- W3174049649 cites W2912948787 @default.
- W3174049649 cites W2945372729 @default.
- W3174049649 cites W2954934222 @default.
- W3174049649 cites W2970815987 @default.
- W3174049649 cites W2998491225 @default.
- W3174049649 cites W3006478218 @default.
- W3174049649 cites W3011154745 @default.
- W3174049649 cites W3015562698 @default.
- W3174049649 cites W3016330481 @default.
- W3174049649 cites W3019446723 @default.
- W3174049649 cites W3024464598 @default.
- W3174049649 cites W3049600440 @default.
- W3174049649 doi "https://doi.org/10.1007/978-981-16-3660-8_46" @default.
- W3174049649 hasPublicationYear "2021" @default.
- W3174049649 type Work @default.
- W3174049649 sameAs 3174049649 @default.
- W3174049649 citedByCount "1" @default.
- W3174049649 countsByYear W31740496492022 @default.
- W3174049649 crossrefType "book-chapter" @default.
- W3174049649 hasAuthorship W3174049649A5003949731 @default.
- W3174049649 hasAuthorship W3174049649A5027237707 @default.
- W3174049649 hasAuthorship W3174049649A5037577894 @default.
- W3174049649 hasAuthorship W3174049649A5078799468 @default.
- W3174049649 hasConcept C108583219 @default.
- W3174049649 hasConcept C116834253 @default.
- W3174049649 hasConcept C118518473 @default.
- W3174049649 hasConcept C119857082 @default.
- W3174049649 hasConcept C154945302 @default.
- W3174049649 hasConcept C18903297 @default.
- W3174049649 hasConcept C2522767166 @default.
- W3174049649 hasConcept C41008148 @default.
- W3174049649 hasConcept C86803240 @default.
- W3174049649 hasConceptScore W3174049649C108583219 @default.
- W3174049649 hasConceptScore W3174049649C116834253 @default.
- W3174049649 hasConceptScore W3174049649C118518473 @default.
- W3174049649 hasConceptScore W3174049649C119857082 @default.
- W3174049649 hasConceptScore W3174049649C154945302 @default.
- W3174049649 hasConceptScore W3174049649C18903297 @default.
- W3174049649 hasConceptScore W3174049649C2522767166 @default.
- W3174049649 hasConceptScore W3174049649C41008148 @default.
- W3174049649 hasConceptScore W3174049649C86803240 @default.
- W3174049649 hasLocation W31740496491 @default.
- W3174049649 hasOpenAccess W3174049649 @default.
- W3174049649 hasPrimaryLocation W31740496491 @default.
- W3174049649 hasRelatedWork W10130694 @default.
- W3174049649 hasRelatedWork W10202958 @default.
- W3174049649 hasRelatedWork W10420938 @default.
- W3174049649 hasRelatedWork W1243554 @default.
- W3174049649 hasRelatedWork W13767720 @default.
- W3174049649 hasRelatedWork W5641948 @default.
- W3174049649 hasRelatedWork W8643228 @default.
- W3174049649 hasRelatedWork W8717022 @default.
- W3174049649 hasRelatedWork W9190101 @default.
- W3174049649 hasRelatedWork W9291730 @default.
- W3174049649 isParatext "false" @default.
- W3174049649 isRetracted "false" @default.
- W3174049649 magId "3174049649" @default.
- W3174049649 workType "book-chapter" @default.