Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174069785> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3174069785 endingPage "106258" @default.
- W3174069785 startingPage "106258" @default.
- W3174069785 abstract "Cardiac arrhythmia, which is an abnormal heart rhythm, is a common clinical problem in cardiology. Arrhythmias can be divided into many Categories, and accurate detection of arrhythmias can effectively prevent heart disease and reduce mortality. However, existing screening methods require long time monitoring and are low cost and low yield. Our goal is to develop a mixed depth model for processing time series to predict multi-classification electrocardiograph (ECG). In this study, we developed a new, more robust network model named Hybrid Convolutional Recurrent Neural Network (HCRNet) for the time-series signal of ECG. This model utilized a nine-class ECG dataset containing tens of thousands of data to automatically detect cardiac arrhythmias. At the same time, a large imbalance arose because some of the cases in our selected MIT-BIH atrial fibrillation database had less than 100 records, but some had more than 10,000 records. Therefore, during data preprocessing, we adopted a scientific and efficient method to solve the ECG data imbalance problem. In the experimental studies, 10-fold cross validation technique is employed to evaluate performance of the model. In order to fully validate our proposed model, we conducted a comprehensive experiment to investigate the performance of the proposed method. Our proposed HCRNet achieved the average accuracy of 99.01% performance and the average sensitivity of 99.58% performance on this dataset. Results suggest that the proposed model outperformed some state-of-the-art studies in ECG classification with a high overall performance value. The HCRNet model can effectively classify arrhythmia signals in nine categories and obtain high efficiency, accuracy and F1 values. These improvements in efficiency and accuracy explain the rationality and science of setting up the modules in the HCRNet. By using this model, it can help cardiologists to correctly identify heartbeat types and perform arrhythmia diagnosis quickly." @default.
- W3174069785 created "2021-07-05" @default.
- W3174069785 creator A5019520928 @default.
- W3174069785 creator A5027348132 @default.
- W3174069785 creator A5031650400 @default.
- W3174069785 creator A5042526900 @default.
- W3174069785 creator A5051619048 @default.
- W3174069785 creator A5070476709 @default.
- W3174069785 date "2021-09-01" @default.
- W3174069785 modified "2023-10-05" @default.
- W3174069785 title "Multi-classification of arrhythmias using a HCRNet on imbalanced ECG datasets" @default.
- W3174069785 cites W1979741060 @default.
- W3174069785 cites W1983921492 @default.
- W3174069785 cites W2143612262 @default.
- W3174069785 cites W2148143831 @default.
- W3174069785 cites W2166918008 @default.
- W3174069785 cites W2283856908 @default.
- W3174069785 cites W2561981131 @default.
- W3174069785 cites W2605056515 @default.
- W3174069785 cites W2771148491 @default.
- W3174069785 cites W2780360157 @default.
- W3174069785 cites W2795302640 @default.
- W3174069785 cites W2870301986 @default.
- W3174069785 cites W2911964244 @default.
- W3174069785 cites W2915509563 @default.
- W3174069785 cites W2917847064 @default.
- W3174069785 cites W2951567882 @default.
- W3174069785 cites W2953193031 @default.
- W3174069785 cites W2989905481 @default.
- W3174069785 cites W3021010134 @default.
- W3174069785 cites W3022945091 @default.
- W3174069785 cites W3023757337 @default.
- W3174069785 cites W3028198339 @default.
- W3174069785 cites W3036776350 @default.
- W3174069785 cites W3039868745 @default.
- W3174069785 cites W3083983389 @default.
- W3174069785 doi "https://doi.org/10.1016/j.cmpb.2021.106258" @default.
- W3174069785 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34218172" @default.
- W3174069785 hasPublicationYear "2021" @default.
- W3174069785 type Work @default.
- W3174069785 sameAs 3174069785 @default.
- W3174069785 citedByCount "24" @default.
- W3174069785 countsByYear W31740697852022 @default.
- W3174069785 countsByYear W31740697852023 @default.
- W3174069785 crossrefType "journal-article" @default.
- W3174069785 hasAuthorship W3174069785A5019520928 @default.
- W3174069785 hasAuthorship W3174069785A5027348132 @default.
- W3174069785 hasAuthorship W3174069785A5031650400 @default.
- W3174069785 hasAuthorship W3174069785A5042526900 @default.
- W3174069785 hasAuthorship W3174069785A5051619048 @default.
- W3174069785 hasAuthorship W3174069785A5070476709 @default.
- W3174069785 hasConcept C10551718 @default.
- W3174069785 hasConcept C119857082 @default.
- W3174069785 hasConcept C124101348 @default.
- W3174069785 hasConcept C126322002 @default.
- W3174069785 hasConcept C148524875 @default.
- W3174069785 hasConcept C153180895 @default.
- W3174069785 hasConcept C154945302 @default.
- W3174069785 hasConcept C2779161974 @default.
- W3174069785 hasConcept C2988455589 @default.
- W3174069785 hasConcept C34736171 @default.
- W3174069785 hasConcept C41008148 @default.
- W3174069785 hasConcept C71924100 @default.
- W3174069785 hasConcept C81363708 @default.
- W3174069785 hasConceptScore W3174069785C10551718 @default.
- W3174069785 hasConceptScore W3174069785C119857082 @default.
- W3174069785 hasConceptScore W3174069785C124101348 @default.
- W3174069785 hasConceptScore W3174069785C126322002 @default.
- W3174069785 hasConceptScore W3174069785C148524875 @default.
- W3174069785 hasConceptScore W3174069785C153180895 @default.
- W3174069785 hasConceptScore W3174069785C154945302 @default.
- W3174069785 hasConceptScore W3174069785C2779161974 @default.
- W3174069785 hasConceptScore W3174069785C2988455589 @default.
- W3174069785 hasConceptScore W3174069785C34736171 @default.
- W3174069785 hasConceptScore W3174069785C41008148 @default.
- W3174069785 hasConceptScore W3174069785C71924100 @default.
- W3174069785 hasConceptScore W3174069785C81363708 @default.
- W3174069785 hasFunder F4320321001 @default.
- W3174069785 hasLocation W31740697851 @default.
- W3174069785 hasOpenAccess W3174069785 @default.
- W3174069785 hasPrimaryLocation W31740697851 @default.
- W3174069785 hasRelatedWork W2977314777 @default.
- W3174069785 hasRelatedWork W2982922518 @default.
- W3174069785 hasRelatedWork W3131504710 @default.
- W3174069785 hasRelatedWork W3165525989 @default.
- W3174069785 hasRelatedWork W3174069785 @default.
- W3174069785 hasRelatedWork W3175428386 @default.
- W3174069785 hasRelatedWork W3193301557 @default.
- W3174069785 hasRelatedWork W3200182046 @default.
- W3174069785 hasRelatedWork W4205516226 @default.
- W3174069785 hasRelatedWork W4213102585 @default.
- W3174069785 hasVolume "208" @default.
- W3174069785 isParatext "false" @default.
- W3174069785 isRetracted "false" @default.
- W3174069785 magId "3174069785" @default.
- W3174069785 workType "article" @default.