Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174124641> ?p ?o ?g. }
- W3174124641 abstract "Traditional histopathology performed by pathologists through naked eyes is insufficient for accurate survival prediction of bladder cancer (BCa). In addition, how neutrophil to lymphocyte ratio (NLR) could be used for prognosis prediction of BCa patients has not been fully understood. In this study, we collected 508 whole slide images (WSIs) of hematoxylin–eosin strained BCa slices and NLR value from the Shanghai General Hospital and The Cancer Genome Atlas (TCGA), which were further processed for nuclear segmentation. Cross-verified prediction models for predicting clinical prognosis were constructed based on machine learning methods. Six WSIs features were selected for the construction of pathomics-based prognosis model, which could automatically distinguish BCa patients with worse survival outcomes, with hazard ratio value of 2.19 in TCGA cohort (95% confidence interval: 1.63–2.94, p <0.0001) and 3.20 in General cohort (95% confidence interval: 1.75–5.87, p = 0.0014). Patients in TCGA cohort with high NLR exhibited significantly worse clinical survival outcome when compared with patients with low NLR (HR = 2.06, 95% CI: 1.29–3.27, p <0.0001). External validation in General cohort also revealed significantly poor prognosis in BCa patients with high NLR (HR = 3.69, 95% CI: 1.83–7.44 p <0.0001). Univariate and multivariate cox regression analysis proved that both the MLPS and the NLR could act as independent prognostic factor for overall survival of BCa patients. Finally, a novel nomogram based on MLPS and NLR was constructed to improve their clinical practicability, which had excellent agreement with actual observation in 1-, 3- and 5-year overall survival prediction. Decision curve analyses both in the TCGA cohort and General cohort revealed that the novel nomogram acted better than both the tumor grade system in prognosis prediction. Our novel nomogram based on MLPS and NLR could act as an excellent survival predictor and provide a scalable and cost-effective method for clinicians to facilitate individualized therapy. Nevertheless, prospective studies are still needed for further verifications." @default.
- W3174124641 created "2021-07-05" @default.
- W3174124641 creator A5003659176 @default.
- W3174124641 creator A5010729427 @default.
- W3174124641 creator A5030419296 @default.
- W3174124641 creator A5033477591 @default.
- W3174124641 creator A5044936528 @default.
- W3174124641 creator A5054418515 @default.
- W3174124641 creator A5060267331 @default.
- W3174124641 creator A5061772307 @default.
- W3174124641 creator A5085142676 @default.
- W3174124641 date "2021-06-17" @default.
- W3174124641 modified "2023-09-30" @default.
- W3174124641 title "A Novel Nomogram Based on Machine Learning-Pathomics Signature and Neutrophil to Lymphocyte Ratio for Survival Prediction of Bladder Cancer Patients" @default.
- W3174124641 cites W1181847540 @default.
- W3174124641 cites W1980584100 @default.
- W3174124641 cites W1982906652 @default.
- W3174124641 cites W1983660988 @default.
- W3174124641 cites W1989925694 @default.
- W3174124641 cites W1999574084 @default.
- W3174124641 cites W2029650614 @default.
- W3174124641 cites W2073277346 @default.
- W3174124641 cites W2113156769 @default.
- W3174124641 cites W2118278569 @default.
- W3174124641 cites W2155668225 @default.
- W3174124641 cites W2301685087 @default.
- W3174124641 cites W2514628397 @default.
- W3174124641 cites W2581082771 @default.
- W3174124641 cites W2623463260 @default.
- W3174124641 cites W2754646412 @default.
- W3174124641 cites W2767459057 @default.
- W3174124641 cites W2772723798 @default.
- W3174124641 cites W2801307887 @default.
- W3174124641 cites W2884928090 @default.
- W3174124641 cites W2908979066 @default.
- W3174124641 cites W2928374940 @default.
- W3174124641 cites W2942610007 @default.
- W3174124641 cites W2952481429 @default.
- W3174124641 cites W2971299101 @default.
- W3174124641 cites W2981358604 @default.
- W3174124641 cites W3082148239 @default.
- W3174124641 cites W3084135760 @default.
- W3174124641 cites W3084161163 @default.
- W3174124641 cites W3088776773 @default.
- W3174124641 cites W3107332957 @default.
- W3174124641 cites W3119005666 @default.
- W3174124641 cites W4225906504 @default.
- W3174124641 cites W4294541781 @default.
- W3174124641 doi "https://doi.org/10.3389/fonc.2021.703033" @default.
- W3174124641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8247435" @default.
- W3174124641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34222026" @default.
- W3174124641 hasPublicationYear "2021" @default.
- W3174124641 type Work @default.
- W3174124641 sameAs 3174124641 @default.
- W3174124641 citedByCount "7" @default.
- W3174124641 countsByYear W31741246412022 @default.
- W3174124641 countsByYear W31741246412023 @default.
- W3174124641 crossrefType "journal-article" @default.
- W3174124641 hasAuthorship W3174124641A5003659176 @default.
- W3174124641 hasAuthorship W3174124641A5010729427 @default.
- W3174124641 hasAuthorship W3174124641A5030419296 @default.
- W3174124641 hasAuthorship W3174124641A5033477591 @default.
- W3174124641 hasAuthorship W3174124641A5044936528 @default.
- W3174124641 hasAuthorship W3174124641A5054418515 @default.
- W3174124641 hasAuthorship W3174124641A5060267331 @default.
- W3174124641 hasAuthorship W3174124641A5061772307 @default.
- W3174124641 hasAuthorship W3174124641A5085142676 @default.
- W3174124641 hasBestOaLocation W31741246411 @default.
- W3174124641 hasConcept C119857082 @default.
- W3174124641 hasConcept C121608353 @default.
- W3174124641 hasConcept C126322002 @default.
- W3174124641 hasConcept C143998085 @default.
- W3174124641 hasConcept C161584116 @default.
- W3174124641 hasConcept C199163554 @default.
- W3174124641 hasConcept C207103383 @default.
- W3174124641 hasConcept C2778963024 @default.
- W3174124641 hasConcept C2780352672 @default.
- W3174124641 hasConcept C3019894029 @default.
- W3174124641 hasConcept C34626388 @default.
- W3174124641 hasConcept C38180746 @default.
- W3174124641 hasConcept C41008148 @default.
- W3174124641 hasConcept C44249647 @default.
- W3174124641 hasConcept C50382708 @default.
- W3174124641 hasConcept C71924100 @default.
- W3174124641 hasConcept C72563966 @default.
- W3174124641 hasConceptScore W3174124641C119857082 @default.
- W3174124641 hasConceptScore W3174124641C121608353 @default.
- W3174124641 hasConceptScore W3174124641C126322002 @default.
- W3174124641 hasConceptScore W3174124641C143998085 @default.
- W3174124641 hasConceptScore W3174124641C161584116 @default.
- W3174124641 hasConceptScore W3174124641C199163554 @default.
- W3174124641 hasConceptScore W3174124641C207103383 @default.
- W3174124641 hasConceptScore W3174124641C2778963024 @default.
- W3174124641 hasConceptScore W3174124641C2780352672 @default.
- W3174124641 hasConceptScore W3174124641C3019894029 @default.
- W3174124641 hasConceptScore W3174124641C34626388 @default.
- W3174124641 hasConceptScore W3174124641C38180746 @default.
- W3174124641 hasConceptScore W3174124641C41008148 @default.
- W3174124641 hasConceptScore W3174124641C44249647 @default.
- W3174124641 hasConceptScore W3174124641C50382708 @default.