Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174136475> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3174136475 endingPage "18" @default.
- W3174136475 startingPage "1" @default.
- W3174136475 abstract "Data privacy and information security pose significant challenges to the big data and artificial intelligence (AI) community as these communities are increasingly under pressure to adhere to regulatory requirements, such as the European Union’s General Data Protection Regulation. Many routine operations in big data applications, such as merging user data from various sources in order to build a machine learning model, are considered to be illegal under current regulatory frameworks. The purpose of federated machine learning is to provide a feasible solution that enables machine learning applications to utilize the data in a distributed manner that does not exchange raw data directly and does not allow any party to infer private information of other parties. This white paper intends to present an overview of the Federated Machine Learning (FML) technology that can be used as a basis for standards, certifications, laws, policies, and/or product ratings. This white paper targets an educated audience, including lawmakers, corporate and governmental policy makers, manufacturers, engineers, and standard setting bodies. However, this white paper is also easily understood by non?technical managers and policy makers as it provides system developers and manufacturers with an overview of Federated Machine Learning techniques. Finally, one must give credit to the IEEE Federated Machine Learning (P3652.1) working group participants for their tremendous dedication, expertise and thoughtful collaborations, without which the publication of IEEE Std 3652.1?2020 [1] would not have been possible ." @default.
- W3174136475 created "2021-07-05" @default.
- W3174136475 creator A5034579880 @default.
- W3174136475 creator A5053010356 @default.
- W3174136475 creator A5059175884 @default.
- W3174136475 creator A5072259549 @default.
- W3174136475 date "2021-06-15" @default.
- W3174136475 modified "2023-09-27" @default.
- W3174136475 title "White Paper - IEEE Federated Machine Learning" @default.
- W3174136475 hasPublicationYear "2021" @default.
- W3174136475 type Work @default.
- W3174136475 sameAs 3174136475 @default.
- W3174136475 citedByCount "1" @default.
- W3174136475 countsByYear W31741364752021 @default.
- W3174136475 crossrefType "journal-article" @default.
- W3174136475 hasAuthorship W3174136475A5034579880 @default.
- W3174136475 hasAuthorship W3174136475A5053010356 @default.
- W3174136475 hasAuthorship W3174136475A5059175884 @default.
- W3174136475 hasAuthorship W3174136475A5072259549 @default.
- W3174136475 hasConcept C10138342 @default.
- W3174136475 hasConcept C119857082 @default.
- W3174136475 hasConcept C123201435 @default.
- W3174136475 hasConcept C124101348 @default.
- W3174136475 hasConcept C132964779 @default.
- W3174136475 hasConcept C144133560 @default.
- W3174136475 hasConcept C154945302 @default.
- W3174136475 hasConcept C17744445 @default.
- W3174136475 hasConcept C182306322 @default.
- W3174136475 hasConcept C199360897 @default.
- W3174136475 hasConcept C199539241 @default.
- W3174136475 hasConcept C2524010 @default.
- W3174136475 hasConcept C2778605646 @default.
- W3174136475 hasConcept C33923547 @default.
- W3174136475 hasConcept C38652104 @default.
- W3174136475 hasConcept C41008148 @default.
- W3174136475 hasConcept C46304622 @default.
- W3174136475 hasConcept C75684735 @default.
- W3174136475 hasConcept C90673727 @default.
- W3174136475 hasConceptScore W3174136475C10138342 @default.
- W3174136475 hasConceptScore W3174136475C119857082 @default.
- W3174136475 hasConceptScore W3174136475C123201435 @default.
- W3174136475 hasConceptScore W3174136475C124101348 @default.
- W3174136475 hasConceptScore W3174136475C132964779 @default.
- W3174136475 hasConceptScore W3174136475C144133560 @default.
- W3174136475 hasConceptScore W3174136475C154945302 @default.
- W3174136475 hasConceptScore W3174136475C17744445 @default.
- W3174136475 hasConceptScore W3174136475C182306322 @default.
- W3174136475 hasConceptScore W3174136475C199360897 @default.
- W3174136475 hasConceptScore W3174136475C199539241 @default.
- W3174136475 hasConceptScore W3174136475C2524010 @default.
- W3174136475 hasConceptScore W3174136475C2778605646 @default.
- W3174136475 hasConceptScore W3174136475C33923547 @default.
- W3174136475 hasConceptScore W3174136475C38652104 @default.
- W3174136475 hasConceptScore W3174136475C41008148 @default.
- W3174136475 hasConceptScore W3174136475C46304622 @default.
- W3174136475 hasConceptScore W3174136475C75684735 @default.
- W3174136475 hasConceptScore W3174136475C90673727 @default.
- W3174136475 hasLocation W31741364751 @default.
- W3174136475 hasOpenAccess W3174136475 @default.
- W3174136475 hasPrimaryLocation W31741364751 @default.
- W3174136475 hasRelatedWork W1589729742 @default.
- W3174136475 hasRelatedWork W1597631404 @default.
- W3174136475 hasRelatedWork W1602745476 @default.
- W3174136475 hasRelatedWork W2004178809 @default.
- W3174136475 hasRelatedWork W2134621262 @default.
- W3174136475 hasRelatedWork W2172140967 @default.
- W3174136475 hasRelatedWork W2585814611 @default.
- W3174136475 hasRelatedWork W2901582015 @default.
- W3174136475 hasRelatedWork W2904052713 @default.
- W3174136475 hasRelatedWork W2955295572 @default.
- W3174136475 hasRelatedWork W3034321265 @default.
- W3174136475 hasRelatedWork W3036911563 @default.
- W3174136475 hasRelatedWork W3119929642 @default.
- W3174136475 hasRelatedWork W3121517306 @default.
- W3174136475 hasRelatedWork W3149367658 @default.
- W3174136475 hasRelatedWork W3206127918 @default.
- W3174136475 hasRelatedWork W39255981 @default.
- W3174136475 hasRelatedWork W601193618 @default.
- W3174136475 hasRelatedWork W1923992873 @default.
- W3174136475 hasRelatedWork W2123392357 @default.
- W3174136475 isParatext "false" @default.
- W3174136475 isRetracted "false" @default.
- W3174136475 magId "3174136475" @default.
- W3174136475 workType "article" @default.