Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174147249> ?p ?o ?g. }
- W3174147249 endingPage "6146" @default.
- W3174147249 startingPage "6138" @default.
- W3174147249 abstract "We introduce an efficient differentiable fluid simulator that can be integrated with deep neural networks as a part of layers for learning dynamics and solving control problems. It offers the capability to handle one-way coupling of fluids with rigid objects using a variational principle that naturally enforces necessary boundary conditions at the fluid-solid interface with sub-grid details. This simulator utilizes the adjoint method to efficiently compute the gradient for multiple time steps of fluid simulation with user defined objective functions. We demonstrate the effectiveness of our method for solving inverse and control problems on fluids with one-way coupled solids. Our method outperforms the previous gradient computations, state-of-the-art derivative-free optimization, and model-free reinforcement learning techniques by at least one order of magnitude." @default.
- W3174147249 created "2021-07-05" @default.
- W3174147249 creator A5010209131 @default.
- W3174147249 creator A5010354503 @default.
- W3174147249 creator A5027545499 @default.
- W3174147249 creator A5081056035 @default.
- W3174147249 date "2021-05-18" @default.
- W3174147249 modified "2023-10-16" @default.
- W3174147249 title "Differentiable Fluids with Solid Coupling for Learning and Control" @default.
- W3174147249 cites W1605438009 @default.
- W3174147249 cites W2046090405 @default.
- W3174147249 cites W2067910404 @default.
- W3174147249 cites W2089858332 @default.
- W3174147249 cites W2145366562 @default.
- W3174147249 cites W2295821368 @default.
- W3174147249 cites W2384495648 @default.
- W3174147249 cites W2501995758 @default.
- W3174147249 cites W2515505748 @default.
- W3174147249 cites W2534240011 @default.
- W3174147249 cites W2556096037 @default.
- W3174147249 cites W2605917215 @default.
- W3174147249 cites W2736601468 @default.
- W3174147249 cites W2805516822 @default.
- W3174147249 cites W2805883505 @default.
- W3174147249 cites W2807201937 @default.
- W3174147249 cites W2811105005 @default.
- W3174147249 cites W2811435282 @default.
- W3174147249 cites W2891122218 @default.
- W3174147249 cites W2906744519 @default.
- W3174147249 cites W2945704673 @default.
- W3174147249 cites W2963030758 @default.
- W3174147249 cites W2963504959 @default.
- W3174147249 cites W2963942037 @default.
- W3174147249 cites W2963970238 @default.
- W3174147249 cites W2964128214 @default.
- W3174147249 cites W2965742591 @default.
- W3174147249 cites W2968042644 @default.
- W3174147249 cites W2970529185 @default.
- W3174147249 cites W2970971581 @default.
- W3174147249 cites W2978940263 @default.
- W3174147249 cites W2985630280 @default.
- W3174147249 cites W2995001833 @default.
- W3174147249 cites W2996324165 @default.
- W3174147249 cites W3007913393 @default.
- W3174147249 cites W3021900716 @default.
- W3174147249 cites W3034237986 @default.
- W3174147249 cites W3035431334 @default.
- W3174147249 cites W3035580435 @default.
- W3174147249 cites W3098435014 @default.
- W3174147249 cites W3102140816 @default.
- W3174147249 cites W3104397553 @default.
- W3174147249 cites W3107819465 @default.
- W3174147249 cites W3109952375 @default.
- W3174147249 cites W3125460488 @default.
- W3174147249 doi "https://doi.org/10.1609/aaai.v35i7.16764" @default.
- W3174147249 hasPublicationYear "2021" @default.
- W3174147249 type Work @default.
- W3174147249 sameAs 3174147249 @default.
- W3174147249 citedByCount "6" @default.
- W3174147249 countsByYear W31741472492020 @default.
- W3174147249 countsByYear W31741472492021 @default.
- W3174147249 countsByYear W31741472492022 @default.
- W3174147249 countsByYear W31741472492023 @default.
- W3174147249 crossrefType "journal-article" @default.
- W3174147249 hasAuthorship W3174147249A5010209131 @default.
- W3174147249 hasAuthorship W3174147249A5010354503 @default.
- W3174147249 hasAuthorship W3174147249A5027545499 @default.
- W3174147249 hasAuthorship W3174147249A5081056035 @default.
- W3174147249 hasBestOaLocation W31741472491 @default.
- W3174147249 hasConcept C11413529 @default.
- W3174147249 hasConcept C115680565 @default.
- W3174147249 hasConcept C126255220 @default.
- W3174147249 hasConcept C127413603 @default.
- W3174147249 hasConcept C131584629 @default.
- W3174147249 hasConcept C134306372 @default.
- W3174147249 hasConcept C154945302 @default.
- W3174147249 hasConcept C182310444 @default.
- W3174147249 hasConcept C187691185 @default.
- W3174147249 hasConcept C202615002 @default.
- W3174147249 hasConcept C207467116 @default.
- W3174147249 hasConcept C2524010 @default.
- W3174147249 hasConcept C33923547 @default.
- W3174147249 hasConcept C41008148 @default.
- W3174147249 hasConcept C45374587 @default.
- W3174147249 hasConcept C459310 @default.
- W3174147249 hasConcept C50644808 @default.
- W3174147249 hasConcept C62354387 @default.
- W3174147249 hasConcept C78519656 @default.
- W3174147249 hasConcept C97541855 @default.
- W3174147249 hasConceptScore W3174147249C11413529 @default.
- W3174147249 hasConceptScore W3174147249C115680565 @default.
- W3174147249 hasConceptScore W3174147249C126255220 @default.
- W3174147249 hasConceptScore W3174147249C127413603 @default.
- W3174147249 hasConceptScore W3174147249C131584629 @default.
- W3174147249 hasConceptScore W3174147249C134306372 @default.
- W3174147249 hasConceptScore W3174147249C154945302 @default.
- W3174147249 hasConceptScore W3174147249C182310444 @default.
- W3174147249 hasConceptScore W3174147249C187691185 @default.