Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174150229> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3174150229 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Mesoscale dynamics in the mesosphere and lower thermosphere (MLT) region have been difficult to study from either ground- or satellite-based observations. For understanding of atmospheric coupling processes, important spatial scales at these altitudes range between tens and hundreds of kilometers in the horizontal plane. To date, this scale size is challenging observationally, so structures are usually parameterized in global circulation models. The advent of multistatic specular meteor radar networks allows exploration of MLT mesoscale dynamics on these scales using an increased number of detections and a diversity of viewing angles inherent to multistatic networks. In this work, we introduce a four-dimensional wind field inversion method that makes use of Gaussian process regression (GPR), which is a nonparametric and Bayesian approach. The method takes measured projected wind velocities and prior distributions of the wind velocity as a function of space and time, specified by the user or estimated from the data, and produces posterior distributions for the wind velocity. Computation of the predictive posterior distribution is performed on sampled points of interest and is not necessarily regularly sampled. The main benefits of the GPR method include this non-gridded sampling, the built-in statistical uncertainty estimates, and the ability to horizontally resolve winds on relatively small scales. The performance of the GPR implementation has been evaluated on Monte Carlo simulations with known distributions using the same spatial and temporal sampling as 1âd of real meteor measurements. Based on the simulation results we find that the GPR implementation is robust, providing wind fields that are statistically unbiased with statistical variances that depend on the geometry and are proportional to the prior velocity variances. A conservative and fast approach can be straightforwardly implemented by employing overestimated prior variances and distances, while a more robust but computationally intensive approach can be implemented by employing training and fitting of model hyperparameters. The latter GPR approach has been applied to a 24âh dataset and shown to compare well to previously used homogeneous and gradient methods. Small-scale features have reasonably low statistical uncertainties, implying geophysical wind field horizontal structures as low as 20â50âkm. We suggest that this GPR approach forms a suitable method for MLT regional and weather studies." @default.
- W3174150229 created "2021-07-05" @default.
- W3174150229 creator A5035258923 @default.
- W3174150229 date "2021-06-24" @default.
- W3174150229 modified "2023-09-29" @default.
- W3174150229 title "Reply on CC3" @default.
- W3174150229 doi "https://doi.org/10.5194/amt-2021-40-ac4" @default.
- W3174150229 hasPublicationYear "2021" @default.
- W3174150229 type Work @default.
- W3174150229 sameAs 3174150229 @default.
- W3174150229 citedByCount "0" @default.
- W3174150229 crossrefType "peer-review" @default.
- W3174150229 hasAuthorship W3174150229A5035258923 @default.
- W3174150229 hasBestOaLocation W31741502291 @default.
- W3174150229 hasConcept C105795698 @default.
- W3174150229 hasConcept C119857082 @default.
- W3174150229 hasConcept C127313418 @default.
- W3174150229 hasConcept C153294291 @default.
- W3174150229 hasConcept C19499675 @default.
- W3174150229 hasConcept C205649164 @default.
- W3174150229 hasConcept C24552861 @default.
- W3174150229 hasConcept C33923547 @default.
- W3174150229 hasConcept C40382383 @default.
- W3174150229 hasConcept C41008148 @default.
- W3174150229 hasConcept C554190296 @default.
- W3174150229 hasConcept C62649853 @default.
- W3174150229 hasConcept C71813955 @default.
- W3174150229 hasConcept C76155785 @default.
- W3174150229 hasConcept C81692654 @default.
- W3174150229 hasConceptScore W3174150229C105795698 @default.
- W3174150229 hasConceptScore W3174150229C119857082 @default.
- W3174150229 hasConceptScore W3174150229C127313418 @default.
- W3174150229 hasConceptScore W3174150229C153294291 @default.
- W3174150229 hasConceptScore W3174150229C19499675 @default.
- W3174150229 hasConceptScore W3174150229C205649164 @default.
- W3174150229 hasConceptScore W3174150229C24552861 @default.
- W3174150229 hasConceptScore W3174150229C33923547 @default.
- W3174150229 hasConceptScore W3174150229C40382383 @default.
- W3174150229 hasConceptScore W3174150229C41008148 @default.
- W3174150229 hasConceptScore W3174150229C554190296 @default.
- W3174150229 hasConceptScore W3174150229C62649853 @default.
- W3174150229 hasConceptScore W3174150229C71813955 @default.
- W3174150229 hasConceptScore W3174150229C76155785 @default.
- W3174150229 hasConceptScore W3174150229C81692654 @default.
- W3174150229 hasLocation W31741502291 @default.
- W3174150229 hasOpenAccess W3174150229 @default.
- W3174150229 hasPrimaryLocation W31741502291 @default.
- W3174150229 hasRelatedWork W1535046094 @default.
- W3174150229 hasRelatedWork W1998594686 @default.
- W3174150229 hasRelatedWork W2046716484 @default.
- W3174150229 hasRelatedWork W2065169402 @default.
- W3174150229 hasRelatedWork W2122717455 @default.
- W3174150229 hasRelatedWork W2325813215 @default.
- W3174150229 hasRelatedWork W3111381576 @default.
- W3174150229 hasRelatedWork W4205105455 @default.
- W3174150229 hasRelatedWork W599701392 @default.
- W3174150229 hasRelatedWork W849579726 @default.
- W3174150229 isParatext "false" @default.
- W3174150229 isRetracted "false" @default.
- W3174150229 magId "3174150229" @default.
- W3174150229 workType "peer-review" @default.