Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174167263> ?p ?o ?g. }
- W3174167263 abstract "In this paper, we aim to recognize materials with combined use of auditory and visual perception. To this end, we construct a new dataset named GLAudio that consists of both the geometry of the object being struck and the sound captured from either modal sound synthesis (for virtual objects) or real measurements (for real objects). Besides global geometries, our dataset also takes local geometries around different hitpoints into consideration. This local information is less explored in existing datasets. We demonstrate that local geometry has a greater impact on the sound than the global geometry and offers more cues in material recognition. To extract features from different modalities and perform proper fusion, we propose a new deep neural network GLAVNet that comprises multiple branches and a well-designed fusion module. Once trained on GLAudio, our GLAVNet provides state-of-the-art performance on material identification and supports fine-grained material categorization." @default.
- W3174167263 created "2021-07-05" @default.
- W3174167263 creator A5009275869 @default.
- W3174167263 creator A5021966023 @default.
- W3174167263 creator A5042385843 @default.
- W3174167263 creator A5043720911 @default.
- W3174167263 creator A5051539538 @default.
- W3174167263 creator A5072475520 @default.
- W3174167263 date "2021-06-01" @default.
- W3174167263 modified "2023-10-16" @default.
- W3174167263 title "GLAVNet: Global-Local Audio-Visual Cues for Fine-Grained Material Recognition" @default.
- W3174167263 cites W1484228140 @default.
- W3174167263 cites W1548783750 @default.
- W3174167263 cites W1677182931 @default.
- W3174167263 cites W1861233026 @default.
- W3174167263 cites W1909952827 @default.
- W3174167263 cites W1953465585 @default.
- W3174167263 cites W1970578576 @default.
- W3174167263 cites W2000123870 @default.
- W3174167263 cites W2027560260 @default.
- W3174167263 cites W2038484192 @default.
- W3174167263 cites W2043506339 @default.
- W3174167263 cites W2047643928 @default.
- W3174167263 cites W2052666245 @default.
- W3174167263 cites W2053544201 @default.
- W3174167263 cites W2055302526 @default.
- W3174167263 cites W2059552065 @default.
- W3174167263 cites W2071527584 @default.
- W3174167263 cites W2075019799 @default.
- W3174167263 cites W2084858263 @default.
- W3174167263 cites W2099332139 @default.
- W3174167263 cites W2109124605 @default.
- W3174167263 cites W2109991971 @default.
- W3174167263 cites W2111560940 @default.
- W3174167263 cites W2129976136 @default.
- W3174167263 cites W2130258210 @default.
- W3174167263 cites W2138414774 @default.
- W3174167263 cites W2145560214 @default.
- W3174167263 cites W2152548630 @default.
- W3174167263 cites W2153786187 @default.
- W3174167263 cites W2159497557 @default.
- W3174167263 cites W2164039212 @default.
- W3174167263 cites W2167383966 @default.
- W3174167263 cites W2211722331 @default.
- W3174167263 cites W2464867595 @default.
- W3174167263 cites W2511428026 @default.
- W3174167263 cites W2566365295 @default.
- W3174167263 cites W2593116425 @default.
- W3174167263 cites W2619697695 @default.
- W3174167263 cites W2745357708 @default.
- W3174167263 cites W2767712265 @default.
- W3174167263 cites W2780568882 @default.
- W3174167263 cites W2895085622 @default.
- W3174167263 cites W2895238724 @default.
- W3174167263 cites W2963069818 @default.
- W3174167263 cites W2963150162 @default.
- W3174167263 cites W2963502419 @default.
- W3174167263 cites W2964116721 @default.
- W3174167263 cites W2964228590 @default.
- W3174167263 cites W2964345931 @default.
- W3174167263 doi "https://doi.org/10.1109/cvpr46437.2021.01420" @default.
- W3174167263 hasPublicationYear "2021" @default.
- W3174167263 type Work @default.
- W3174167263 sameAs 3174167263 @default.
- W3174167263 citedByCount "4" @default.
- W3174167263 countsByYear W31741672632022 @default.
- W3174167263 countsByYear W31741672632023 @default.
- W3174167263 crossrefType "proceedings-article" @default.
- W3174167263 hasAuthorship W3174167263A5009275869 @default.
- W3174167263 hasAuthorship W3174167263A5021966023 @default.
- W3174167263 hasAuthorship W3174167263A5042385843 @default.
- W3174167263 hasAuthorship W3174167263A5043720911 @default.
- W3174167263 hasAuthorship W3174167263A5051539538 @default.
- W3174167263 hasAuthorship W3174167263A5072475520 @default.
- W3174167263 hasConcept C116834253 @default.
- W3174167263 hasConcept C153180895 @default.
- W3174167263 hasConcept C154945302 @default.
- W3174167263 hasConcept C169760540 @default.
- W3174167263 hasConcept C185592680 @default.
- W3174167263 hasConcept C188027245 @default.
- W3174167263 hasConcept C26760741 @default.
- W3174167263 hasConcept C2781238097 @default.
- W3174167263 hasConcept C3017588708 @default.
- W3174167263 hasConcept C31972630 @default.
- W3174167263 hasConcept C41008148 @default.
- W3174167263 hasConcept C49774154 @default.
- W3174167263 hasConcept C59822182 @default.
- W3174167263 hasConcept C64876066 @default.
- W3174167263 hasConcept C71139939 @default.
- W3174167263 hasConcept C86803240 @default.
- W3174167263 hasConcept C94124525 @default.
- W3174167263 hasConceptScore W3174167263C116834253 @default.
- W3174167263 hasConceptScore W3174167263C153180895 @default.
- W3174167263 hasConceptScore W3174167263C154945302 @default.
- W3174167263 hasConceptScore W3174167263C169760540 @default.
- W3174167263 hasConceptScore W3174167263C185592680 @default.
- W3174167263 hasConceptScore W3174167263C188027245 @default.
- W3174167263 hasConceptScore W3174167263C26760741 @default.
- W3174167263 hasConceptScore W3174167263C2781238097 @default.
- W3174167263 hasConceptScore W3174167263C3017588708 @default.