Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174183088> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3174183088 abstract "Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multimodal data from different sensors, requiring diverse data preprocessing, sensor fusion, and feature aggregation. Second, there are multiple tasks that require various AI models to run simultaneously, e.g., perception, localization, and control. Third, the computing and control system is heterogeneous, composed of hardware components with varied features, such as embedded CPUs, GPUs, FPGAs, and dedicated accelerators. Therefore, autonomous systems essentially require multi-modal multitask (MMMT) learning which must be aware of hardware performance and implementation strategies. While MMMT learning has been attracting intensive research interests, its applications in autonomous systems are still underexplored. In this paper, we first discuss the opportunities of applying MMMT techniques in autonomous systems, and then discuss the unique challenges that must be solved. In addition, we discuss the necessity and opportunities of MMMT model and hardware co-design, which is critical for autonomous systems especially with power/resource-limited or heterogeneous platforms. We formulate the MMMT model and heterogeneous hardware implementation co-design as a differentiable optimization problem, with the objective of improving the solution quality and reducing the overall power consumption and critical path latency. We advocate for further explorations of MMMT in autonomous systems and software/hardware co-design solutions." @default.
- W3174183088 created "2021-07-05" @default.
- W3174183088 creator A5053022655 @default.
- W3174183088 creator A5056321228 @default.
- W3174183088 date "2021-06-06" @default.
- W3174183088 modified "2023-10-11" @default.
- W3174183088 title "Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems" @default.
- W3174183088 cites W2118542129 @default.
- W3174183088 cites W2251324968 @default.
- W3174183088 cites W2322277786 @default.
- W3174183088 cites W2489874841 @default.
- W3174183088 cites W2549401308 @default.
- W3174183088 cites W2565443908 @default.
- W3174183088 cites W2583362313 @default.
- W3174183088 cites W2619383789 @default.
- W3174183088 cites W2794258351 @default.
- W3174183088 cites W2808567185 @default.
- W3174183088 cites W2913340405 @default.
- W3174183088 cites W2962762260 @default.
- W3174183088 cites W2962850006 @default.
- W3174183088 cites W2963216850 @default.
- W3174183088 cites W2963448286 @default.
- W3174183088 cites W2963883751 @default.
- W3174183088 cites W2967733054 @default.
- W3174183088 cites W2989687707 @default.
- W3174183088 cites W2989940015 @default.
- W3174183088 cites W2990874363 @default.
- W3174183088 cites W2997442807 @default.
- W3174183088 cites W2999026992 @default.
- W3174183088 cites W3010873746 @default.
- W3174183088 cites W3011727199 @default.
- W3174183088 cites W3017222518 @default.
- W3174183088 cites W3026104448 @default.
- W3174183088 cites W3028041000 @default.
- W3174183088 cites W3034727271 @default.
- W3174183088 cites W3035461736 @default.
- W3174183088 cites W3092767330 @default.
- W3174183088 cites W3093905905 @default.
- W3174183088 cites W3099342433 @default.
- W3174183088 cites W4256613398 @default.
- W3174183088 doi "https://doi.org/10.1109/aicas51828.2021.9458577" @default.
- W3174183088 hasPublicationYear "2021" @default.
- W3174183088 type Work @default.
- W3174183088 sameAs 3174183088 @default.
- W3174183088 citedByCount "9" @default.
- W3174183088 countsByYear W31741830882022 @default.
- W3174183088 countsByYear W31741830882023 @default.
- W3174183088 crossrefType "proceedings-article" @default.
- W3174183088 hasAuthorship W3174183088A5053022655 @default.
- W3174183088 hasAuthorship W3174183088A5056321228 @default.
- W3174183088 hasBestOaLocation W31741830882 @default.
- W3174183088 hasConcept C111919701 @default.
- W3174183088 hasConcept C118524514 @default.
- W3174183088 hasConcept C120314980 @default.
- W3174183088 hasConcept C13164978 @default.
- W3174183088 hasConcept C149635348 @default.
- W3174183088 hasConcept C154945302 @default.
- W3174183088 hasConcept C2777904410 @default.
- W3174183088 hasConcept C41008148 @default.
- W3174183088 hasConcept C42935608 @default.
- W3174183088 hasConceptScore W3174183088C111919701 @default.
- W3174183088 hasConceptScore W3174183088C118524514 @default.
- W3174183088 hasConceptScore W3174183088C120314980 @default.
- W3174183088 hasConceptScore W3174183088C13164978 @default.
- W3174183088 hasConceptScore W3174183088C149635348 @default.
- W3174183088 hasConceptScore W3174183088C154945302 @default.
- W3174183088 hasConceptScore W3174183088C2777904410 @default.
- W3174183088 hasConceptScore W3174183088C41008148 @default.
- W3174183088 hasConceptScore W3174183088C42935608 @default.
- W3174183088 hasLocation W31741830881 @default.
- W3174183088 hasLocation W31741830882 @default.
- W3174183088 hasOpenAccess W3174183088 @default.
- W3174183088 hasPrimaryLocation W31741830881 @default.
- W3174183088 hasRelatedWork W1732210391 @default.
- W3174183088 hasRelatedWork W2002703587 @default.
- W3174183088 hasRelatedWork W2063534976 @default.
- W3174183088 hasRelatedWork W2284838239 @default.
- W3174183088 hasRelatedWork W2365743651 @default.
- W3174183088 hasRelatedWork W2473740624 @default.
- W3174183088 hasRelatedWork W2995926156 @default.
- W3174183088 hasRelatedWork W3147787617 @default.
- W3174183088 hasRelatedWork W3217667592 @default.
- W3174183088 hasRelatedWork W4295855328 @default.
- W3174183088 isParatext "false" @default.
- W3174183088 isRetracted "false" @default.
- W3174183088 magId "3174183088" @default.
- W3174183088 workType "article" @default.