Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174191028> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3174191028 endingPage "101936" @default.
- W3174191028 startingPage "101936" @default.
- W3174191028 abstract "Disease prediction plays a significant role in the life of people, as predicting the threat of diseases is necessary for citizens to live life in a healthy manner. The current development of data mining schemes has offered several systems that concern on disease prediction. Even though the disease prediction system includes more advantages, there are still many challenges that might limit its realistic use, such as the efficiency of prediction and information protection. This paper intends to develop an improved disease prediction model, which includes three phases: Weighted Coalesce rule generation, Optimized feature extraction, and Classification. At first, Coalesce rule generation is carried out after data transformation that involves normalization and sequential labeling. Here, rule generation is done based on the weights (priority level) assigned for each attribute by the expert. The support of each rule is multiplied with the proposed weighted function, and the resultant weighted support is compared with the minimum support for selecting the rules. Further, the obtained rule is subject to the optimal feature selection process. The hybrid classifiers that merge Support Vector Machine (SVM), and Deep Belief Network (DBN) takes the role of classification, which characterizes whether the patient is affected with the disease or not. In fact, the optimized feature selection process depends on a new hybrid optimization algorithm by linking the Grey Wolf Optimization (GWO) with Dragonfly Algorithm (DA) and hence, the presented model is termed as Grey Wolf Levy Updated-DA (GWU-DA). Here, the heart disease and breast cancer data are taken, where the efficiency of the proposed model is validated by comparing over the state-of-the-art models. From the analysis, the proposed GWU-DA model for accuracy is 65.98 %, 53.61 %, 42.27 %, 35.05 %, 34.02 %, 11.34 %, 13.4 %, 10.31 %, 9.28 % and 9.89 % better than CBA + CPAR, MKL + ANFIS, RF + EA, WCBA, IQR + KNN + PSO, NL-DA + SVM + DBN, AWFS-RA, HCS-RFRS, ADS-SM-DNN and OSSVM-HGSA models at 60th learning percentage." @default.
- W3174191028 created "2021-07-05" @default.
- W3174191028 creator A5050138126 @default.
- W3174191028 creator A5052067234 @default.
- W3174191028 creator A5075507671 @default.
- W3174191028 date "2021-07-01" @default.
- W3174191028 modified "2023-09-24" @default.
- W3174191028 title "Grey wolf assisted dragonfly-based weighted rule generation for predicting heart disease and breast cancer" @default.
- W3174191028 cites W2061438946 @default.
- W3174191028 cites W2079636586 @default.
- W3174191028 cites W2183697171 @default.
- W3174191028 cites W2205836001 @default.
- W3174191028 cites W2300551961 @default.
- W3174191028 cites W2505975774 @default.
- W3174191028 cites W2510739444 @default.
- W3174191028 cites W2529925435 @default.
- W3174191028 cites W2593494811 @default.
- W3174191028 cites W2622382573 @default.
- W3174191028 cites W2624827840 @default.
- W3174191028 cites W2626919545 @default.
- W3174191028 cites W2733809450 @default.
- W3174191028 cites W2738076571 @default.
- W3174191028 cites W2751244373 @default.
- W3174191028 cites W2751330684 @default.
- W3174191028 cites W2768473193 @default.
- W3174191028 cites W2776897388 @default.
- W3174191028 cites W2787865013 @default.
- W3174191028 cites W2790555466 @default.
- W3174191028 cites W2791019495 @default.
- W3174191028 cites W2793459592 @default.
- W3174191028 cites W2794402969 @default.
- W3174191028 cites W2795293709 @default.
- W3174191028 cites W2800094831 @default.
- W3174191028 cites W2803361509 @default.
- W3174191028 cites W2803377716 @default.
- W3174191028 cites W2804287578 @default.
- W3174191028 cites W2806489700 @default.
- W3174191028 cites W2886951895 @default.
- W3174191028 cites W2943511409 @default.
- W3174191028 cites W3024670837 @default.
- W3174191028 doi "https://doi.org/10.1016/j.compmedimag.2021.101936" @default.
- W3174191028 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34218121" @default.
- W3174191028 hasPublicationYear "2021" @default.
- W3174191028 type Work @default.
- W3174191028 sameAs 3174191028 @default.
- W3174191028 citedByCount "3" @default.
- W3174191028 countsByYear W31741910282022 @default.
- W3174191028 countsByYear W31741910282023 @default.
- W3174191028 crossrefType "journal-article" @default.
- W3174191028 hasAuthorship W3174191028A5050138126 @default.
- W3174191028 hasAuthorship W3174191028A5052067234 @default.
- W3174191028 hasAuthorship W3174191028A5075507671 @default.
- W3174191028 hasConcept C119857082 @default.
- W3174191028 hasConcept C12267149 @default.
- W3174191028 hasConcept C124101348 @default.
- W3174191028 hasConcept C136886441 @default.
- W3174191028 hasConcept C144024400 @default.
- W3174191028 hasConcept C148483581 @default.
- W3174191028 hasConcept C153180895 @default.
- W3174191028 hasConcept C154945302 @default.
- W3174191028 hasConcept C19165224 @default.
- W3174191028 hasConcept C41008148 @default.
- W3174191028 hasConceptScore W3174191028C119857082 @default.
- W3174191028 hasConceptScore W3174191028C12267149 @default.
- W3174191028 hasConceptScore W3174191028C124101348 @default.
- W3174191028 hasConceptScore W3174191028C136886441 @default.
- W3174191028 hasConceptScore W3174191028C144024400 @default.
- W3174191028 hasConceptScore W3174191028C148483581 @default.
- W3174191028 hasConceptScore W3174191028C153180895 @default.
- W3174191028 hasConceptScore W3174191028C154945302 @default.
- W3174191028 hasConceptScore W3174191028C19165224 @default.
- W3174191028 hasConceptScore W3174191028C41008148 @default.
- W3174191028 hasLocation W31741910281 @default.
- W3174191028 hasLocation W31741910282 @default.
- W3174191028 hasOpenAccess W3174191028 @default.
- W3174191028 hasPrimaryLocation W31741910281 @default.
- W3174191028 hasRelatedWork W2041399278 @default.
- W3174191028 hasRelatedWork W2099369243 @default.
- W3174191028 hasRelatedWork W2136184105 @default.
- W3174191028 hasRelatedWork W2141705618 @default.
- W3174191028 hasRelatedWork W3105251098 @default.
- W3174191028 hasRelatedWork W3194539120 @default.
- W3174191028 hasRelatedWork W3210877509 @default.
- W3174191028 hasRelatedWork W4223656335 @default.
- W3174191028 hasRelatedWork W2187500075 @default.
- W3174191028 hasRelatedWork W2345184372 @default.
- W3174191028 hasVolume "91" @default.
- W3174191028 isParatext "false" @default.
- W3174191028 isRetracted "false" @default.
- W3174191028 magId "3174191028" @default.
- W3174191028 workType "article" @default.