Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174193760> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3174193760 abstract "<p>The ability to accurately and reliably obtain images of shallow subsurface anomalies within the Earth is important for hazard monitoring at many geologic structures, such as volcanic edifices. In recent years, the use of machine learning as a novel, data-driven approach to addressing complex inverse problems in the geosciences has gained increasing attention, particularly in the field of seismology. Here we present a physics-based, machine learning method to integrate disparate geophysical datasets for shallow subsurface imaging. We develop a methodology for imaging static density variations at a volcano with well-characterized topography by pairing synthetic cosmic-ray muon and gravity datasets. We use an artificial neural network (ANN) to interpret noisy synthetic datasets generated using theoretical knowledge of the forward kernels that relate these datasets to density. The deep learning model is trained with synthetic data from a suite of possible anomalous density structures and its accuracy is determined by comparing against the known forward calculation.<span>&#160;</span></p><p>In essence, we have converted a traditional inversion problem into a pattern recognition tool, where the ANN learns to predict discrete anomalous patterns within a target structure. Given a comprehensive suite of possible patterns and an appropriate amount of added noise to the synthetic data, the ANN can then interpolate the best-fit anomalous pattern given data it has never seen before, such as those obtained from field measurements. The power of this approach is its generality, and our methodology may be applied to a range of observables, such as seismic travel times and electrical conductivity. Our method relies on physics-based forward kernels that connect observations to physical parameters, such as density, temperature, composition, porosity, and saturation. The key benefit in using a physics-based approach as opposed to a data-driven one is the ability to get accurate predictions in cases where the amount of data may be too sparse or difficult to obtain to reliably train a neural network. We compare our approach to a traditional inversion, where appropriate, and highlight the (dis)advantages of the deep learning model.</p>" @default.
- W3174193760 created "2021-07-05" @default.
- W3174193760 creator A5035418411 @default.
- W3174193760 creator A5072351106 @default.
- W3174193760 date "2021-03-03" @default.
- W3174193760 modified "2023-09-25" @default.
- W3174193760 title "Using artificial neural networks with joint muon-gravity datasets for shallow subsurface density prediction at volcanoes" @default.
- W3174193760 doi "https://doi.org/10.5194/egusphere-egu21-717" @default.
- W3174193760 hasPublicationYear "2021" @default.
- W3174193760 type Work @default.
- W3174193760 sameAs 3174193760 @default.
- W3174193760 citedByCount "0" @default.
- W3174193760 crossrefType "posted-content" @default.
- W3174193760 hasAuthorship W3174193760A5035418411 @default.
- W3174193760 hasAuthorship W3174193760A5072351106 @default.
- W3174193760 hasConcept C11413529 @default.
- W3174193760 hasConcept C115961682 @default.
- W3174193760 hasConcept C119857082 @default.
- W3174193760 hasConcept C120806208 @default.
- W3174193760 hasConcept C127313418 @default.
- W3174193760 hasConcept C154945302 @default.
- W3174193760 hasConcept C160920958 @default.
- W3174193760 hasConcept C165205528 @default.
- W3174193760 hasConcept C1893757 @default.
- W3174193760 hasConcept C41008148 @default.
- W3174193760 hasConcept C50644808 @default.
- W3174193760 hasConcept C77928131 @default.
- W3174193760 hasConcept C8058405 @default.
- W3174193760 hasConcept C99498987 @default.
- W3174193760 hasConceptScore W3174193760C11413529 @default.
- W3174193760 hasConceptScore W3174193760C115961682 @default.
- W3174193760 hasConceptScore W3174193760C119857082 @default.
- W3174193760 hasConceptScore W3174193760C120806208 @default.
- W3174193760 hasConceptScore W3174193760C127313418 @default.
- W3174193760 hasConceptScore W3174193760C154945302 @default.
- W3174193760 hasConceptScore W3174193760C160920958 @default.
- W3174193760 hasConceptScore W3174193760C165205528 @default.
- W3174193760 hasConceptScore W3174193760C1893757 @default.
- W3174193760 hasConceptScore W3174193760C41008148 @default.
- W3174193760 hasConceptScore W3174193760C50644808 @default.
- W3174193760 hasConceptScore W3174193760C77928131 @default.
- W3174193760 hasConceptScore W3174193760C8058405 @default.
- W3174193760 hasConceptScore W3174193760C99498987 @default.
- W3174193760 hasLocation W31741937601 @default.
- W3174193760 hasOpenAccess W3174193760 @default.
- W3174193760 hasPrimaryLocation W31741937601 @default.
- W3174193760 hasRelatedWork W10582653 @default.
- W3174193760 hasRelatedWork W11726810 @default.
- W3174193760 hasRelatedWork W1630218 @default.
- W3174193760 hasRelatedWork W2868762 @default.
- W3174193760 hasRelatedWork W4119310 @default.
- W3174193760 hasRelatedWork W5298165 @default.
- W3174193760 hasRelatedWork W5883342 @default.
- W3174193760 hasRelatedWork W6229156 @default.
- W3174193760 hasRelatedWork W9437672 @default.
- W3174193760 hasRelatedWork W1232545 @default.
- W3174193760 isParatext "false" @default.
- W3174193760 isRetracted "false" @default.
- W3174193760 magId "3174193760" @default.
- W3174193760 workType "article" @default.