Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174205887> ?p ?o ?g. }
- W3174205887 endingPage "076509" @default.
- W3174205887 startingPage "076509" @default.
- W3174205887 abstract "Machine learning has been reported to be useful for the analysis of the trade-off relationships among major properties of chemically amplified extreme ultraviolet resists. The resist materials and processes used in photomask production using electron beam lithography seem similar. However, they involve distinct processes and factors. As one of the critical issues in resist pattern formation, line edge roughness (LER) was investigated using machine learning based on six variables, namely, sensitivity, half-pitch, exposure pattern width, beam blur, and the concentrations of photoacid generator and photodecomposable quenchers in terms of a chemical gradient (an indicator of LER). The relationship between the chemical gradient and these six variables was well formulated using the 5th degree polynomials of these six variables. The coefficients of feature values indicated that the process blur is a relatively more important factor than the beam blur in the 1.95–3.70 nm range in 11–16 nm half-pitch patterning." @default.
- W3174205887 created "2021-07-05" @default.
- W3174205887 creator A5033552897 @default.
- W3174205887 creator A5072236094 @default.
- W3174205887 creator A5090399440 @default.
- W3174205887 date "2021-07-01" @default.
- W3174205887 modified "2023-10-10" @default.
- W3174205887 title "Analysis of mitigating factors for line edge roughness generated during electron beam lithography using machine learning" @default.
- W3174205887 cites W1451772226 @default.
- W3174205887 cites W1967278099 @default.
- W3174205887 cites W1983550027 @default.
- W3174205887 cites W1986070559 @default.
- W3174205887 cites W1993096832 @default.
- W3174205887 cites W1998363590 @default.
- W3174205887 cites W1999835787 @default.
- W3174205887 cites W2002357496 @default.
- W3174205887 cites W2006900277 @default.
- W3174205887 cites W2007980058 @default.
- W3174205887 cites W2014948129 @default.
- W3174205887 cites W2022554365 @default.
- W3174205887 cites W2035864323 @default.
- W3174205887 cites W2043931897 @default.
- W3174205887 cites W2052439749 @default.
- W3174205887 cites W2071551540 @default.
- W3174205887 cites W2138283841 @default.
- W3174205887 cites W2162412012 @default.
- W3174205887 cites W2326300063 @default.
- W3174205887 cites W2944990213 @default.
- W3174205887 cites W2990826657 @default.
- W3174205887 cites W3034164865 @default.
- W3174205887 cites W3089177468 @default.
- W3174205887 cites W3095112444 @default.
- W3174205887 cites W3131409125 @default.
- W3174205887 cites W3134105256 @default.
- W3174205887 cites W4249506799 @default.
- W3174205887 cites W4254304826 @default.
- W3174205887 doi "https://doi.org/10.35848/1347-4065/ac0d13" @default.
- W3174205887 hasPublicationYear "2021" @default.
- W3174205887 type Work @default.
- W3174205887 sameAs 3174205887 @default.
- W3174205887 citedByCount "3" @default.
- W3174205887 countsByYear W31742058872022 @default.
- W3174205887 countsByYear W31742058872023 @default.
- W3174205887 crossrefType "journal-article" @default.
- W3174205887 hasAuthorship W3174205887A5033552897 @default.
- W3174205887 hasAuthorship W3174205887A5072236094 @default.
- W3174205887 hasAuthorship W3174205887A5090399440 @default.
- W3174205887 hasConcept C107365816 @default.
- W3174205887 hasConcept C120665830 @default.
- W3174205887 hasConcept C121332964 @default.
- W3174205887 hasConcept C146024833 @default.
- W3174205887 hasConcept C147120987 @default.
- W3174205887 hasConcept C14737013 @default.
- W3174205887 hasConcept C154945302 @default.
- W3174205887 hasConcept C159985019 @default.
- W3174205887 hasConcept C162307627 @default.
- W3174205887 hasConcept C162996421 @default.
- W3174205887 hasConcept C168834538 @default.
- W3174205887 hasConcept C171250308 @default.
- W3174205887 hasConcept C186060115 @default.
- W3174205887 hasConcept C192562407 @default.
- W3174205887 hasConcept C198352243 @default.
- W3174205887 hasConcept C200274948 @default.
- W3174205887 hasConcept C204223013 @default.
- W3174205887 hasConcept C2524010 @default.
- W3174205887 hasConcept C2776798109 @default.
- W3174205887 hasConcept C2779227376 @default.
- W3174205887 hasConcept C33923547 @default.
- W3174205887 hasConcept C41008148 @default.
- W3174205887 hasConcept C49040817 @default.
- W3174205887 hasConcept C520434653 @default.
- W3174205887 hasConcept C53524968 @default.
- W3174205887 hasConcept C62520636 @default.
- W3174205887 hasConcept C71039073 @default.
- W3174205887 hasConcept C86803240 @default.
- W3174205887 hasConcept C95312477 @default.
- W3174205887 hasConceptScore W3174205887C107365816 @default.
- W3174205887 hasConceptScore W3174205887C120665830 @default.
- W3174205887 hasConceptScore W3174205887C121332964 @default.
- W3174205887 hasConceptScore W3174205887C146024833 @default.
- W3174205887 hasConceptScore W3174205887C147120987 @default.
- W3174205887 hasConceptScore W3174205887C14737013 @default.
- W3174205887 hasConceptScore W3174205887C154945302 @default.
- W3174205887 hasConceptScore W3174205887C159985019 @default.
- W3174205887 hasConceptScore W3174205887C162307627 @default.
- W3174205887 hasConceptScore W3174205887C162996421 @default.
- W3174205887 hasConceptScore W3174205887C168834538 @default.
- W3174205887 hasConceptScore W3174205887C171250308 @default.
- W3174205887 hasConceptScore W3174205887C186060115 @default.
- W3174205887 hasConceptScore W3174205887C192562407 @default.
- W3174205887 hasConceptScore W3174205887C198352243 @default.
- W3174205887 hasConceptScore W3174205887C200274948 @default.
- W3174205887 hasConceptScore W3174205887C204223013 @default.
- W3174205887 hasConceptScore W3174205887C2524010 @default.
- W3174205887 hasConceptScore W3174205887C2776798109 @default.
- W3174205887 hasConceptScore W3174205887C2779227376 @default.
- W3174205887 hasConceptScore W3174205887C33923547 @default.
- W3174205887 hasConceptScore W3174205887C41008148 @default.