Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174249076> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W3174249076 endingPage "5517" @default.
- W3174249076 startingPage "5510" @default.
- W3174249076 abstract "An unsupervised analysis of the classification and clustering of data is one of the most powerful and insightful data mining approaches used in different disciplines to identify homogenous groups of objects based on similarities. In machine learning with the increased generation of data, classification continues to be a key subject. While several literary works are interested in classifying the single label, the enormous dimensions of the data require a new approach. Multi-label clustering has therefore gained considerable attention in the testing community in recent years. This method involves a data instance with different labels and it is useful for many fields, e.g. image analysis, text classification and Big Data privacy security. In this case the classification of the single label is expanded. The high dimensionality of the distributed system needs an efficient and effective data management. Multi Label Classifier divides one or more labels in a set of labels of a particular instance. Multi-label classification is one of the leading data collection methods, where a set of labels is annotated in the data collection for each single instance. In one instance, the nature of multiple labels requires more computer power than classified one-label tasks. A multi-label grouping is often simplified by the method of splitting into one label classification, which avoids the distinction between labels. A Multi-Label Big Data Clustering with Privacy Protection Probability Linked Weight Optimization (MLBDC-PP-LWO) model is provided in this paper. In this proposed work, after the identification of sensitive data from data clusters, sensitive information is protected or generalized. The models proposed are compared to existing models and the findings show that the proposed model privacy preservation levels are more than the traditional methods." @default.
- W3174249076 created "2021-07-05" @default.
- W3174249076 creator A5089113832 @default.
- W3174249076 date "2021-05-10" @default.
- W3174249076 modified "2023-09-23" @default.
- W3174249076 title "An Efficient Probabilistic Multi Labeled Big Data Clustering Model for Privacy Preservation Using Linked Weight Optimization Model" @default.
- W3174249076 hasPublicationYear "2021" @default.
- W3174249076 type Work @default.
- W3174249076 sameAs 3174249076 @default.
- W3174249076 citedByCount "0" @default.
- W3174249076 crossrefType "journal-article" @default.
- W3174249076 hasAuthorship W3174249076A5089113832 @default.
- W3174249076 hasConcept C119857082 @default.
- W3174249076 hasConcept C124101348 @default.
- W3174249076 hasConcept C154945302 @default.
- W3174249076 hasConcept C2776482837 @default.
- W3174249076 hasConcept C41008148 @default.
- W3174249076 hasConcept C49937458 @default.
- W3174249076 hasConcept C58489278 @default.
- W3174249076 hasConcept C73555534 @default.
- W3174249076 hasConcept C75684735 @default.
- W3174249076 hasConcept C95623464 @default.
- W3174249076 hasConceptScore W3174249076C119857082 @default.
- W3174249076 hasConceptScore W3174249076C124101348 @default.
- W3174249076 hasConceptScore W3174249076C154945302 @default.
- W3174249076 hasConceptScore W3174249076C2776482837 @default.
- W3174249076 hasConceptScore W3174249076C41008148 @default.
- W3174249076 hasConceptScore W3174249076C49937458 @default.
- W3174249076 hasConceptScore W3174249076C58489278 @default.
- W3174249076 hasConceptScore W3174249076C73555534 @default.
- W3174249076 hasConceptScore W3174249076C75684735 @default.
- W3174249076 hasConceptScore W3174249076C95623464 @default.
- W3174249076 hasIssue "11" @default.
- W3174249076 hasLocation W31742490761 @default.
- W3174249076 hasOpenAccess W3174249076 @default.
- W3174249076 hasPrimaryLocation W31742490761 @default.
- W3174249076 hasRelatedWork W189164464 @default.
- W3174249076 hasRelatedWork W2046114481 @default.
- W3174249076 hasRelatedWork W2163776610 @default.
- W3174249076 hasRelatedWork W2167325512 @default.
- W3174249076 hasRelatedWork W2401131202 @default.
- W3174249076 hasRelatedWork W2411610382 @default.
- W3174249076 hasRelatedWork W2522168456 @default.
- W3174249076 hasRelatedWork W2804729156 @default.
- W3174249076 hasRelatedWork W2901973642 @default.
- W3174249076 hasRelatedWork W2903810586 @default.
- W3174249076 hasRelatedWork W2909469631 @default.
- W3174249076 hasRelatedWork W2944081799 @default.
- W3174249076 hasRelatedWork W2945456403 @default.
- W3174249076 hasRelatedWork W2962702189 @default.
- W3174249076 hasRelatedWork W2987098737 @default.
- W3174249076 hasRelatedWork W3035234799 @default.
- W3174249076 hasRelatedWork W3100047548 @default.
- W3174249076 hasRelatedWork W3136407507 @default.
- W3174249076 hasRelatedWork W3194704632 @default.
- W3174249076 hasRelatedWork W3197966474 @default.
- W3174249076 hasVolume "12" @default.
- W3174249076 isParatext "false" @default.
- W3174249076 isRetracted "false" @default.
- W3174249076 magId "3174249076" @default.
- W3174249076 workType "article" @default.