Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174303178> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3174303178 endingPage "100082" @default.
- W3174303178 startingPage "100082" @default.
- W3174303178 abstract "The combustion optimization problem of Circulation Fluidized Bed Boiler (CFBB) can be regarded as a constrained dynamic multi-objective optimization problem, so it has become a hot research to solve the problem for saving energy and reducing polluting gas. However, it is difficult to optimize the combustion process based on traditional optimization method due to a variety of complex characteristics of boiler, such as non-linearity, strong coupling , large lag. In order to address the boiler combustion optimization problem, a kind of multi-objective modified teaching–learning-based optimization (namely MMTLBO) is proposed. For the MMTLBO, a constrained mechanism is firstly introduced into MMTLBO. Finally, the MMTLBO and ameliorated extreme learning machine (AELM) are utilized to optimize the CFBB’s combustion process for increasing the thermal efficiency and reducing the NOx/SO 2 emissions concentration. The AELM is used to establish the comprehensive model of the thermal efficiency and NOx/SO 2 emissions. The model accuracy and standard deviation can arrive 10 −2 and 10 −4 , separately. So the model shows high generalization ability and good stability. Based on the model, the MMTLBO is applied to optimize the boiler’s combustion process parameters. Experiment results show that the MMTLBO can find several groups reasonable combustion parameters which increase the thermal efficiency and reduce the NOx/SO 2 emissions concentration. Therefore, the AELM and MMTLBO are the effective artificial intelligence algorithms. • Firstly, a kind of multi-objective version of MTLBO is proposed. • Secondly, the MMTLBO and AELM are used to optimize the combustion process of boiler. • Thirdly, a novel constrained mechanism is firstly introduced in the MMTLBO." @default.
- W3174303178 created "2021-07-05" @default.
- W3174303178 creator A5029050520 @default.
- W3174303178 creator A5035441171 @default.
- W3174303178 creator A5054236056 @default.
- W3174303178 creator A5062085628 @default.
- W3174303178 creator A5083315753 @default.
- W3174303178 date "2021-09-01" @default.
- W3174303178 modified "2023-10-01" @default.
- W3174303178 title "Three-objective optimization of boiler combustion process based on multi-objective teaching–learning based optimization algorithm and ameliorated extreme learning machine" @default.
- W3174303178 cites W1965947365 @default.
- W3174303178 cites W1980323303 @default.
- W3174303178 cites W1989931811 @default.
- W3174303178 cites W2019319598 @default.
- W3174303178 cites W2026263342 @default.
- W3174303178 cites W2034324984 @default.
- W3174303178 cites W2046797139 @default.
- W3174303178 cites W2049350005 @default.
- W3174303178 cites W2070321991 @default.
- W3174303178 cites W2159772788 @default.
- W3174303178 cites W2174096823 @default.
- W3174303178 cites W2231445574 @default.
- W3174303178 cites W260467751 @default.
- W3174303178 cites W2617424585 @default.
- W3174303178 cites W2793409604 @default.
- W3174303178 cites W2801262644 @default.
- W3174303178 cites W2804885387 @default.
- W3174303178 cites W2887698254 @default.
- W3174303178 cites W2890177623 @default.
- W3174303178 doi "https://doi.org/10.1016/j.mlwa.2021.100082" @default.
- W3174303178 hasPublicationYear "2021" @default.
- W3174303178 type Work @default.
- W3174303178 sameAs 3174303178 @default.
- W3174303178 citedByCount "4" @default.
- W3174303178 countsByYear W31743031782022 @default.
- W3174303178 countsByYear W31743031782023 @default.
- W3174303178 crossrefType "journal-article" @default.
- W3174303178 hasAuthorship W3174303178A5029050520 @default.
- W3174303178 hasAuthorship W3174303178A5035441171 @default.
- W3174303178 hasAuthorship W3174303178A5054236056 @default.
- W3174303178 hasAuthorship W3174303178A5062085628 @default.
- W3174303178 hasAuthorship W3174303178A5083315753 @default.
- W3174303178 hasBestOaLocation W31743031781 @default.
- W3174303178 hasConcept C105923489 @default.
- W3174303178 hasConcept C127413603 @default.
- W3174303178 hasConcept C178790620 @default.
- W3174303178 hasConcept C185592680 @default.
- W3174303178 hasConcept C203032635 @default.
- W3174303178 hasConcept C21880701 @default.
- W3174303178 hasConcept C2780013297 @default.
- W3174303178 hasConcept C41008148 @default.
- W3174303178 hasConcept C50406533 @default.
- W3174303178 hasConcept C548081761 @default.
- W3174303178 hasConceptScore W3174303178C105923489 @default.
- W3174303178 hasConceptScore W3174303178C127413603 @default.
- W3174303178 hasConceptScore W3174303178C178790620 @default.
- W3174303178 hasConceptScore W3174303178C185592680 @default.
- W3174303178 hasConceptScore W3174303178C203032635 @default.
- W3174303178 hasConceptScore W3174303178C21880701 @default.
- W3174303178 hasConceptScore W3174303178C2780013297 @default.
- W3174303178 hasConceptScore W3174303178C41008148 @default.
- W3174303178 hasConceptScore W3174303178C50406533 @default.
- W3174303178 hasConceptScore W3174303178C548081761 @default.
- W3174303178 hasLocation W31743031781 @default.
- W3174303178 hasOpenAccess W3174303178 @default.
- W3174303178 hasPrimaryLocation W31743031781 @default.
- W3174303178 hasRelatedWork W2017660127 @default.
- W3174303178 hasRelatedWork W2355224560 @default.
- W3174303178 hasRelatedWork W2363702852 @default.
- W3174303178 hasRelatedWork W2364323338 @default.
- W3174303178 hasRelatedWork W2373980595 @default.
- W3174303178 hasRelatedWork W2386651721 @default.
- W3174303178 hasRelatedWork W2392148950 @default.
- W3174303178 hasRelatedWork W2392690952 @default.
- W3174303178 hasRelatedWork W2899187509 @default.
- W3174303178 hasRelatedWork W4235124941 @default.
- W3174303178 hasVolume "5" @default.
- W3174303178 isParatext "false" @default.
- W3174303178 isRetracted "false" @default.
- W3174303178 magId "3174303178" @default.
- W3174303178 workType "article" @default.